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This paper presents a quaternion-based bang-bang feedback controller solving the

attitude stabilization problem for inertially symmetric spacecraft. The proposed con-

troller is hybrid, and it relies on a hierarchical switching logic. At the high-level,

a supervisor avoids unwinding by selecting between two different hybrid controllers.

These low-level controllers locally stabilize a desired attitude by viewing the rigid body

dynamics as a perturbation of three decoupled double-integrators. It is proved that

the proposed controller locally stabilizes the desired attitude to any desired accuracy

without inducing high-frequency switching in the actuators. Extensive numerical sim-

ulations suggest that the convergence of the proposed controller is global, and that

the controller’s performance is unaffected by small external bounded perturbations,

asymmetry of the spacecraft and measurement noise.

I. Introduction

This paper presents a novel feedback controller that stabilizes the attitude of a rigid body to

any degree of accuracy. Its main feature is that it is bang-bang and, as argued below, it constitutes

the first solution to the attitude stabilization problem with on-off actuators and bounded switching

frequency.

Although many modern spacecraft are equipped with actuators that can provide smooth torque

inputs, on-off jet thrusters still play a prominent role in performing reorientation maneuvers for

large spacecraft. Vehicles like the ATV [1], and the Orion spacecraft [2], rely exclusively on jet-

thrusters to perform any attitude maneuver. Given the typical performance limitations affecting

modern jet-thrusters, it is of crucial importance to design bang-bang controllers that do not induce

high-frequency switching behaviors.

The problem of designing bang-bang attitude stabilizers has been intensively studied in the

past. Most existing solutions apply to the case of small angles and planar maneuvers ([3], [4]).

Approximate techniques based on the use of PWM (Pulse Width Modulation) and PWPFM (Pulse

Width Pulse Frequency Modulation) have been proposed in this context, [5]. These techniques,

however, introduce a problematic coupling between the switching frequency and the asymptotic

bound on the state, even in the absence of external perturbations. A review of some of these

techniques can be found in [6].

A robust bang-bang feedback controller was proposed in [3] for the simplified case of single-axis

maneuvers. The controller is obtained by introducing dead-bands about the parabolic switching

curves of the classical bang-bang time-optimal controller for double-integrators. The controller is
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robust with respect to constant uncertainties in the system’s parameters and constant external

torques. A bang-bang hybrid attitude stabilizer was presented by the authors of this paper in [7]

for the case of planar maneuvers. The proposed controller practically stabilizes a target spacecraft

orientation despite external unknown bounded perturbations and measurement noise, while keeping

the number of controller’s switches uniformly bounded over compact time intervals. A rigorous

analysis of the controller’s features can be found in [8].

Designing bang-bang controllers for general, three-dimensional maneuvers, is far more chal-

lenging. Most of the results proposed in the literature originate from various attempts to find the

solution to the time-optimal attitude control problem in the case of rest-to-rest maneuvers, and

result in open-loop controllers. It was shown in [9] that for an inertially symmetric spacecraft, the

time-optimal controller is indeed bang-bang. It was observed through simulations that the con-

troller induces a total of only five switches in the control input value if the reorientation maneuver

is smaller than 72 deg., a total of seven switches otherwise. The control values and switching times

were computed numerically, through continuation techniques. These results were later extended

to asymmetric rigid spacecraft in [10], under the assumption that the control input magnitude is

significantly larger that the nonlinear gyroscopic term in the dynamics. Also in this case, the control

values and switching times were computed through approximate numerical procedures. The results

presented in [10] confirmed the findings presented in [9]. More recently, new trajectories have been

found numerically in [11] that are characterized by six control switches. In [12], the problem of

performing a time-optimal reconfiguration for an axisymmetric rigid spacecraft, by using only two

control torques, was tackled and solved numerically.

All the controllers discussed above require complex numerical procedures in order to generate

accurate enough estimates of the optimal control input values and switching times. The very nature

of the numerical schemes adopted to solve the optimization problem heavily influences the quality

of the solution found. Moreover, initial guesses for states, co-states and control inputs are often

required. As is to be expected, these controllers are inherently non-robust to external unmodeled

perturbations, uncertainty in the system’s parameters, or measurement noise.

A control strategy based on a sequence of eight bang-bang maneuvers was proposed in [13].

First, a discontinuous controller is applied to bring the spacecraft to a rest configuration, i.e., zero

angular velocity. A sequence of seven single-axis bang-bang maneuvers is then performed that

exploit the structure of the kinematic and dynamic equations. The authors of [13] point out that

this particular control strategy suffers from a lack of robustness to both external perturbations and

measurement noise, in that unmodeled perturbations may prevent the controller from successfully

completing one of the maneuvers. Moreover, each single-axis bang-bang maneuver may induce

sliding modes when external perturbations and measurement noise are considered. Sliding mode

controllers with piecewise-constant components, as in [14], are ill-suited to be applied to solve the

spacecraft attitude control problem, in that the control input switching frequency is theoretically

infinite along the sliding manifold.

The problem of designing a robust feedback stabilizer that solves the bang-bang attitude control

problem without inducing high-frequency switching remains, to this day, open. A controller based

on the Euler angles attitude parametrization was proposed in [7] by the authors of this paper.

There, it is shown that the proposed controller solves the bang-bang attitude control problem

locally. In this paper the controller presented in [7] is modified so to take full advantage of the

quaternion parametrization of the spacecraft attitude. The proposed controller is hybrid (each

control input depends on the dynamics of a discrete variable) and hierarchical, in that a high-level

supervisor switches between two distinct controllers in order to avoid the insurgence of unwinding.

It is rigorously proved that the proposed controller locally solves the bang-bang attitude control

problem without inducing high-frequency switching. These results are proved assuming the full

nonlinear dynamics of the spacecraft. An extensive Monte Carlo numerical analysis indicates that

the controller might in fact yield global practical stability. The controller’s robustness with respect

to measurement noise and external perturbations is also investigated through extensive simulations.
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The paper is organized as follows. Section II formulates the problem investigated in this paper.

Section III presents the controller solving the problem. The stability proof of the paper main results

is presented in Section IV. An extensive Monte-Carlo numerical simulation is presented in Section

V. The robustness of the proposed controller to measurement noise and external perturbations is

investigated in Section VI and VII, respectively.

Notation: We denote Bǫ(0) = {x ∈ R
2 : (x⊤x)1/2 < ǫ} and B̄ǫ(0) = {x ∈ R

2 : (x⊤x)1/2 ≤ ǫ}.
These definitions imply that the set B0(0) is empty, while B̄0(0) = {0}. The 3× 3 identity matrix

is denoted by I. Throughout the paper, sets are denoted by capital letters. The boundary of a set

A is defined as ∂A = Ā \ IntA where Ā is the closure of A and IntA is its interior. We denote by

−A the set −A = {x : −x ∈ A}.

II. Model and Problem Formulation

Consider an inertially symmetric rigid spacecraft. Let I be an inertial frame, and attach a

frame B to the center of mass of the spacecraft in such a way that the frame axes coincide with

the principal axes of the spacecraft. With this convention, the inertia tensor of the spacecraft has

the form J = J0I, where J0 is a positive scalar. Let Ω ∈ R
3 denote the angular velocity of the

spacecraft expressed in body frame. The spacecraft attitude is uniquely described by a rotation

matrix R ∈ SO(3), where SO(3) is the set of 3× 3 orthogonal matrices with unitary determinant,

SO(3) = {R ∈ R
3×3 : R⊤R = RR⊤ = I, detR = +1}.

For any x ∈ R
3, let S(x) be the skew-symmetric matrix defined as

S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0





such that, for any v ∈ R
3, x× v = S(x)v. The rotational dynamics of the spacecraft is modeled by

the set of equations

Ṙ = RS(Ω)

J0Ω̇ = τ,
(1)

with state (R,Ω) ∈ SO(3)×R
3. It is assumed that the on-board actuators can deliver a bang-bang

torque about each axis of the spacecraft, i.e., τi ∈ {−τ̄i, 0,+τ̄i}, with τ̄i > 0, i = 1, 2, 3.

The goal is to design a bang-bang feedback controller that practically stabilizes an equilibrium

(R⋆, 0), with R⋆ ∈ SO(3). In this context, the adverb “practically” signifies “approximate stabiliza-

tion to any desired degree of accuracy”. In other words, the goal is to design a controller able to

asymptotically stabilize any arbitrarily small neighborhood U of (R⋆, 0). It is assumed, without loss

of generality, that (R⋆, 0) = (I, 0). To comply with modern jet-thrusters performance limitations,

another requirement for the control design is that the controller must never generate sliding modes

or high-frequency switching behaviors.

To simplify the control design, the quaternion parametrization of spacecraft orientation is used.

Consider the 3-dimensional sphere S
3 = {x ∈ R

4 : x⊤x = 1}. Any element of SO(3) can be

parametrized by a unit quaternion q = (ǫ, η) ∈ S
3 using the Rodrigues formula, [15], r : S3 → SO(3),

r(q) = I+2ηS(ǫ)+2S(ǫ)2. In what follows, the north pole of the 3−sphere is denoted by 1 := (0, 1).

Using the quaternion representation, system (1) can be rewritten as follows

ǫ̇ = 1
2 (ηI + S(ǫ)) Ω

η̇ = − 1
2ǫ

TΩ

Ω̇ = u,

(2)

with state χ = (q,Ω) ∈ X, where X = S
3 × R

3 denotes the state space of system (2). Each

control acceleration ui is given by ui ∈ {−ūi, 0,+ūi}, where ūi = τi/J0. The major advantage
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afforded by working with the quaternion parametrization lies in the reduction of the number of

parameters used to describe the spacecraft attitude. This choice, however, comes at a price: it is

a well known fact that r : S3 → SO(3) is a two-to-one mapping, i.e., if R = r(q), then R = r(−q)

as well. In particular, both the north pole 1 and south pole −1 of S3, map to the rotation matrix

I, and therefore two distinct equilibria (q,Ω) = (1, 0) and (q,Ω) = (−1, 0) in (2) correspond to the

equilibrium (R,Ω) = (I, 0) for system (1). This causes the well-known unwinding behavior when

the control design is carried out without taking this fact into proper consideration. As argued in

[16], to avoid unwinding in a neighborhood of the target equilibria it is necessary and sufficient to

simultaneously stabilize both equilibria (q,Ω) = (1, 0) and (q,Ω) = (−1, 0) of system (2).

A precise statement of the problem investigated in this paper is given below.

Bang-Bang Attitude Control Problem: Consider system (2) and the desired attitude P =

{(q,Ω) ∈ X : q = ±1, Ω = 0}. Design a bang-bang feedback controller τ = (τ1, τ2, τ3) with

τi ∈ {−τ̄i, 0,+τ̄i}, i = 1, 2, 3, such that

i) The set P is practically stable for the closed-loop system. In other words, given an arbitrarily

small neighborhood U of P in X, there exist controller parameters and a compact set W , with

P ⊂ IntW ⊂ U , such that W is asymptotically stable for the closed-loop system.

ii) The number of controller switches is uniformly bounded over compact sets of initial conditions

and over compact time intervals: for any compact set W0 ⊂ X and for any T > 0, there exists

N ∈ N such that for any (q(0),Ω(0)) ∈ W0 the controller switches value at most N times over

any time interval of length T .

In other words, we seek to design a feedback bang-bang controller able to steer the state of

system (2) inside an arbitrarily small neighborhood of the target configuration in finite time, without

inducing high-frequency switching in the actuators.

III. Main Results

We propose to solve the bang-bang attitude control problem by designing a hybrid controller

that relies on a hierarchical switching logic. The control architecture, depicted in Figure 1, is

comprised of two hierarchical layers. At the high level, a supervisor automaton H(δ) (where δ is

a user-defined parameter) is responsible for preventing unwinding and broadcasts an output value

h ∈ {−1, 1} to the low level. At the low level, three automata Ai(pi, h), i = 1, 2, 3 (pi is a vector of

user-defined parameters) are driven by the supervisor through the parameter h ∈ {−1, 1}, and are

responsible for the assignment of the control values ui, i = 1, 2, 3.

u1

A1(p1, h)

u2

A2(p2, h)

u3

A3(p3, h)

H(δ)

h h h

Supervisor

Low-Level

Controller

Fig. 1: Pictorial representation of the proposed control structure.

The high-level automaton H(δ) selects which equilibrium to stabilize between (q,Ω) = (1, 0)

and (q,Ω) = (−1, 0). It does so by implementing a hysteresis mechanism as in [15], the result of
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which is the numerical value of parameter h ∈ {−1,+1}. Each low-level automaton Ai(pi, h) assigns

the control input ui ∈ {−ūi, 0,+ūi} so as to stabilize (ǫi,Ωi) to a neighborhood of (0, 0) whose size

depends on the parameters in pi, and to stabilize η to a neighborhood of h = ±1, which is decided

by the supervisor.

A. Supervisor: Automaton H(δ)

The supervisor H(δ) is depicted below.

H(δ)
η(0) < 0

h = −1

η ≥ δ

h = +1

η ≤ −δ

η(0) ≥ 0
(3)

Referring to Figure 1, the automaton above monitors the scalar part of the quaternion, η, and

it chooses the desired value of η to be stabilized, +1 or −1, through the choice of the parameter h.

The idea is quite simple. If η ≥ δ > 0, then the supervisor assigns h = +1, while if η ≤ −δ < 0, it

assigns h = −1. If η ∈ (−δ,+δ), h is assigned according to an hysteresis mechanism, similarly to

what was done in [15], to avoid undesired switching in the presence of measurement noise. As in

[15], the hysteresis mechanism presents a trade-off between robustness with respect to measurement

noise and unwinding in the hysteresis region (−δ,+δ).

B. Low-Level Controllerr: Automata Ai(pi, h) and Control Assignment u⋆
i

The low-level controller consists of three automata A1,A2,A3, each driven by h, the output of

the supervisor. Each automaton Ai monitors the variables (ǫi,Ωi) and assigns the control value ui ∈
{−ūi, 0,+ūi} so as to drive (ǫi,Ωi) to a neighborhood of (0, 0). The idea for doing so is to view the

(ǫi,Ωi) dynamics as a perturbation of a double-integrator, and use the double-integrator stabilizer

in [8] and [17]. As mentioned earlier, the supervisor output h is used to decide which equilibrium

should be stabilized. Let ξi = (hǫi, ωi), where h is the output of H(δ) currently broadcasted to the

low-level controller. The automata Ai are given below.

Ai(pi, h)

ξi(0)∈Γ−

i
\B̄

δi
1
(0)

qi1

ξi∈Λ+

i
\B̄

δi
1
(0)

ξ
i∈B̄

δ i
1
(0)

qi3

ξ
i∈Γ−

i \B
δ i
2
(0)

ξi∈
Γ
+
i
\B δ

i
2

(0)

ξi(0)∈Γ+

i
\B̄

δi
1
(0)

qi2

ξi∈
B̄ δ

i
1

(0)

ξi∈Λ−

i
\B̄

δi
1
(0)

ξi(0)∈B̄
δi
1
(0)

(4)

In the above, Γ+
i , Γ−

i are the initialization sets (see Figure 2) defined as

Γ+
i = {(ǫi,Ωi) : ǫi > 0, Ωi ≤ −2

√
ūiǫi} ∪ {(ǫi,Ωi) : ǫi ≤ 0, Ωi < 2

√−ūiǫi},
Γ−
i = −Γ+

i ,
(5)
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Λ+
i , Λ−

i are the switching sets (see Figure 3a) defined as

Λ+
i = {(ǫi,Ωi) : ǫi ≤ 0, Ωi ≤ 2

√−κiūiǫi} ∪ {(ǫi,Ωi) : ǫi > 0, Ωi ≤ −2
√
ūiǫi},

Λ−
i = −Λ+

i ,
(6)

with κi ∈ [0, 1). Letting set Qi = {qi1, qi2, qi3} denote the set of states of automaton Ai(pi, h), each

control input ui is assigned through the feedback u⋆
i : Qi → R defined as

u⋆
i (q

i
1) = −ūi

u⋆
i (q

i
2) = +ūi

u⋆
i (q

i
3) = 0.

(7)

Notice that each feedback u⋆
i depends only on the current active state of automaton Ai, whose

dynamics is driven by continuous states (ǫi,Ωi).

Γ+
i

ǫi

Ωi

Γ−
i

Fig. 2: Initialization sets Γ+
i ,Γ

−
i .

Λ+
i

ǫi

Ωi

Λ−
i

(a)

Λ+
i

ǫi

Ωi

Λ−
i

(b)

Fig. 3: Switching sets Λ+
i ,Λ

−
i , with κi ∈ (0, 1), (a), and with κi = 0, (b).

In [8], it is shown that, when κi = 0, the automaton (4) and the feedback in (7) globally
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practically stabilize the origin of the double integrator

ǫ̇i = Ωi,

Ω̇i = u⋆
i .

The idea in the proof of Theorem III.1 below is to view system (2) as a perturbation of three

decoupled double-integrator and exploit the stabilization property of the foregoing double-integrator

stabilizer. The automaton Ai(pi, h) is parametrized by the vector pi = (δi1, δ
i
2, κi) of user-defined

parameters, and by h, the output of the supervisor automaton. The parameters δi1, δ
i
2 determine

the size of the neighborhood of (ǫi,Ωi) = (0, 0) being stabilized, while the parameter κi is useful for

proving the theoretical stabilization properties of the attitude controller, but can be set to zero in

practice. When κ1 = κ2 = κ3 = 0, the switching sets are as in Figure 3b. More comments on the

choice of controller parameters are provided in Section V.

The main result of the paper is stated below.

Theorem III.1 Consider system (2) where J0 is a positive parameter and τ = (τ1, τ2, τ2) is re-

stricted to have values τi ∈ {−τ̄i, 0,+τ̄i}. For any τ̄i > 0, i = 1, 2, 3, the hybrid feedback controller

given by supervisor (3) and three copies of automata (4) with feedback (7) solves the bang-bang

attitude control problem. In particular, the following two properties hold for the closed-loop system:

i) For any neighbourhood U of the set P = {(q,Ω) ∈ X : q = ±1,Ω = 0}, there exist controller

parameters δi1, δ
i
2 > 0, κi > 0, i = 1, 2, 3, and δ ∈ (0, 1) such that U has a compact subset W

containing P in its interior which is asymptotically stable.

ii) The number of controller switches is uniformly bounded in the sense stated in part (ii) of the

problem statement in Section II.

IV. Proof of Theorem III.1

To simplify the analysis, it is assumed that the actuators provide the same torque about each

axis, i.e., τ̄i = τ̄ for all i = 1, 2, 3. As proposed in [9], consider a time scaling factor of
√

τ̄ /J0 and

define the non-dimensional angular velocity as ω = Ω
√

J0/τ̄ . The spacecraft rotational dynamics

in Eq. (2) can be rewritten as follows

ǫ̇ = 1
2 (ηI + S(ǫ))ω

η̇ = − 1
2ǫ

Tω

ω̇ = u,

(8)

where ui = τi/τ̄ ∈ {−1, 0,+1} is the non-dimensional control input about the i-th axis. In the

following, it is shown that the set P = {(q, ω) ∈ X : q = ±1,Ω = 0} is practically stable for system

(8) with controller (3), (4), (7). Since P is the union of two isolated equilibria, one needs to show

that each equilibrium (q,Ω) = (1, 0) and (q,Ω) = (−1, 0) is practically stable. It will now be shown

that (q,Ω) = (1, 0) is practically stable. The proof of practical stability of the other equilibrium is

identical. Consider the function V + : X → R defined as

V +(q, ω) = V1(ǫ1, ω1) + V2(ǫ2, ω2) + V3(ǫ3, ω3), (9)

where function Vi : R× R → R≥0, i = 1, 2, 3, is given by

Vi(ǫi, ωi) = 4ǫ2iωiσ(ǫi, ωi) +
4

3
ω3
i ǫi +

3

20
ω5
i σ(ǫi, ωi) +

4

5

(

2ǫiσ(ǫi, ωi) +
1

2
ω2
i

)
5
2

,

with σ : R× R → {−1, 0,+1} given by

σ(ǫi, ωi) =















sign
(

2ǫi +
1
2 |ωi|ωi

)

, if 2ǫi +
1
2 |ωi|ωi 6= 0

sign (ωi) , if 2ǫi +
1
2 |ωi|ωi = 0

0, if (ǫi, ωi) = (0, 0) .
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The functions Vi were first proposed in [21], where it was shown that each Vi is C1 and positive

definite with respect to the origin. Hence, V + is C1 and V +(q, ω) = 0 if and only if (ǫ, ω) = (0, 0),

so that V + is positive definite near the equilibrium (q,Ω) = (1, 0). In the following, denote V̇ + the

time-derivative of function V + along the solutions of the closed-loop system computed between any

two consecutive state transitions of the automata. Further, we denote by qi ∈ Qi the current state

of automaton Ai(pi, h). The following lemmas are used in the sequel.

Lemma IV.1 Consider the Lyapunov function V + : X → R defined in Eq. (9) and let V +
ǫi =

∂V +/∂ǫi and V +
ωi

= ∂V +/∂ωi. There exist α, β > 0 such that the following inequality holds

V̇ + ≤
3
∑

i=1

−λi(q, ωi, u
⋆
i (q

i)), (10)

where the function (q, ωi) 7→ −λi(q, ωi, u
⋆
i (q

i)) is continuous and defined as −λi(q, ωi, u
⋆
i ) =

1/2V +
ǫi ηωi+V +

ωi
u⋆
i (q

i)+α
√

1− η2ǫ2i+β
√

1− η2ω4
i , and qi is the current state of automaton Ai(pi, h).

Lemma IV.2 Consider system (8) with hybrid feedback (3), (4), (7). Suppose automaton Ai(pi, h),

for some i = 1, 2, 3, is not at state qi3, i.e., qi ∈ {qi1, qi2}. There exists η̄ ∈ (δ, 1) such that if state

(q, ω) is such that η ≥ η̄, then −λi(q, ωi, u
⋆
i (q

i)) in Lemma IV.1 is negative definite with respect to

(ǫi, ωi) = (0, 0).

The proofs of the foregoing lemmas are presented in the appendix. Lemma IV.1 establishes a

bound on V̇ +, while Lemma IV.2 states that there exists a neighborhood of equilibrium (q, ω) =

(1, 0) on which, as long as u⋆
i (q

i) ∈ {−1, 1} and (ǫi, ωi) 6= (0, 0), −λi(q, ωi, u
⋆
i (q

i)) in Lemma IV.1

will be negative definite.

Let U be an arbitrary open neighborhood of equilibrium (q, ω) = (1, 0) in X. Pick δ ∈ (0, 1)

and define Xη̄ := {(q, ω) ∈ X : η > η̄}, with η̄ ∈ (δ, 1) as in Lemma IV.2. For each real number

ρ > 0, denote Wρ := {(q, ω) ∈ X : η > 0, V +(q, ω) ≤ ρ}. Let γ0 > 0 be such that Wγ0
⊂ Xη̄ and let

γ1 ∈ (0, γ0) be such that Wγ1
⊂ U . In the following it is shown that there exist controller parameters

pi = (δi1, δ
i
2, κi) in Ai(pi, h), i = 1, 2, 3, such that compact set Wγ1

⊂ U is made asymptotically stable

for the closed loop system. This is proved by applying Theorem 7.8 in [18]. It must be shown that

there exist controller parameters (p1, p2, p3) in Ai, i = 1, 2, 3 such that the following holds

a) V + does not increase across state transitions of the automata Ai(pi, h), i = 1, 2, 3;

b) V̇ + < 0 on Int Wγ0
\Wγ1

;

c) the closed-loop system does not admit Zeno solutions (i.e., any solution of the closed-loop

system is characterized by an unbounded continuous time domain).

Let δi2 = δ2, i = 1, 2, 3, where δ2 > 0 is chosen such that {(q, ω) ∈ Xη̄ : ‖(ǫi, ωi)‖2 ≤
δ2, for all i = 1, 2, 3} ⊂ Int Wγ1

. Pick δi1 ∈ (0, δ2), i = 1, 2, 3. By construction, if all the au-

tomata are at state qi3, i = 1, 2, 3, then (q, ω) ∈ Wγ1
. It is now verified that the conditions a) to c)

hold.

Condition a) can be easily verified by noticing that V + is continuous across any state transitions

of the automata.

Condition b) is now verified. The way parameter δ2 was selected guarantees that, if (q, ω) ∈
Int Wγ0

\ Wγ1
, then at least one automaton is not in state qi3. In other words, for at least one

i = 1, 2, 3, (ǫi, ωi) 6∈ B̄δ2(0) and so u⋆
i (q

i) ∈ {−1, 1}. Consider the following worst case scenario:

suppose that two out of the three automata, say A2 and A3, are in state q23 and q33 , respectively,

with (ǫ2, ω2), (ǫ3, ω3) ∈ B̄δ2(0) and u⋆
2(q

2
3) = u⋆

3(q
3
3) = 0, while automaton A1 is either in state

q11 or q12 , i.e., u⋆
1(q

1) ∈ {−1, 1}. By Lemma IV.1, V̇ + is upper-bounded by −λ1(q, ω1, u
⋆
1(q

1)) −
λ2(q, ω2, 0) − λ3(q, ω3, 0), with −λi(q, ωi, u

⋆
i (q

i)), i = 1, 2, 3, given by Lemma IV.1. Since the

function −λ2(q, ω2, 0) − λ3(q, ω3, 0) is continuous, since (ǫ2, ω2), (ǫ3, ω3) ∈ B̄δ2(0), a compact set,
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and since q ∈ S
3, also a compact set, it follows that there exists a continuous, positive-definite

function w(δ2) such that −λ2(q, ω2, 0)− λ3(q, ω3, 0) ≤ w(δ2), which implies that

V̇ + ≤ −λ1(q, ω1, u
⋆
1(q

1)) + w(δ2).

In the scenario considered here, on the set Wγ0
\ Wγ1

, the automaton A1 can only be at state

q1 ∈ {q11 , q12}. For each such q1, Lemmas IV.1 and IV.2 guarantee that the function (q, ω1) 7→
λ1(q, ω1, u

⋆
1(q

1)) is continuous and negative definite on Wγ0
, thus there exists λ̄ > 0 such that

−λ1(q, ω1, u
⋆
1(q

1)) ≤ −λ̄ on Int Wγ0
\ Wγ1

. Since w(δ2) is continuous and w(0) = 0, there exists

δ∗2 > 0 such that for all δ2 ∈ (0, δ∗2), w(δ2) < λ̄. Therefore, for all δ2 ∈ (0, δ∗2) and all (q, ω) ∈
Int Wγ0

\ Wγ1
with (ǫ2, ω2), (ǫ3, ω3) ∈ B̄δ2(0), V̇

+ < 0. The other scenarios (only one automaton

in state qi3, or none at all) are handled in an analogous manner. This shows that V̇ + < 0 on

Int Wγ0
\Wγ1

.

Condition c) can be verified by showing that the number of state transitions performed by any

automaton H(δ) and Ai(pi, h) is uniformly bounded over compact sets of initial conditions and over

compact time intervals. Consider a compact set of initial conditions Wγ , with γ ∈ [γ0, γ1) and let

ω̄ = max{|ωi(0)|, 2}, as (q(0), ω(0)) varies over Wγ . It is easy to show that set S
3 × {ω : |ωi| ≤

ω̄} ⊃ Wγ is positively invariant. Hence, for any initial condition in Wγ , ‖ω‖2 is bounded from

above. This implies that |ω̇i|, |ǫ̇i|, i = 1, 2, 3, and |η̇| are uniformly bounded as well. Since |η̇| is

bounded, it immediately follows that the time between consecutive state transitions of automaton

H(δ) is bounded. Since |ω̇i|, |ǫ̇i|, i = 1, 2, 3, are uniformly bounded, it follows that the time between

consecutive state transitions involving states qi1 and qi2 is lower bounded by a constant T1 > 0,

since ξi = (ǫi, ωi) must cover a minimum distance bounded from zero to trigger a state transition.

Similarly, the time between two consecutive state transitions of the type qij → qi3, followed by

qi3 → qik, with j, k ∈ {1, 2} is lower bounded by a constant T2 > 0. There are sequences of state

transitions for which a lower non-zero bound does not exist. Similarly to what was shown in the

proof of Theorem 1 in [8], these specific sequences are always followed by one of the sequences

presented above. Hence, for any T > 0 there exists N > 0 such that for each initial condition in

Wγ automaton Ai(pi, h) undergoes at most N state transitions over any compact time interval of

length T .

This proves that the proposed controller practically stabilizes the equilibrium (q, ω) = (1, 0),

with basin of attraction containing the set Wγ0
. A similar analysis can be repeated on a neigh-

borhood of equilibrium (q, ω) = (−1, 0) with Lyapunov function V − = V +(−q, ω), to prove that

the controller practically stabilizes equilibrium (q, ω) = (−1, 0). This concludes the proof of the

theorem. �

V. Numerical Estimation of the Controller’s Basin of Attraction

The results presented in Section IV show that the proposed controller solves the bang-bang

attitude control problem locally. It is of crucial importance for engineering applications to provide

an estimation of the controller’s basin of attraction. This section presents a Monte Carlo numerical

study aimed at convincing the reader that the convergence of the proposed controller might, in

fact, be global, i.e., the controller’s basin of attraction is the whole state space X. Throughout this

section the non-dimensional system (8) with controller (3), (4), (7) is considered so as to eliminate

any dependency on a specific choice for parameters J0 and τ̄ . In order to improve the accuracy of

the simulation, the coordinate transformation has been modified so to have ui ∈ {−0.1, 0,+0.1} for

all i = 1, 2, 3. This can be done by replacing any
√

J0/τ̄ term with
√

J0/(10τ̄).

To show that the convergence of the proposed controller is global a large set of initial conditions

(several thousands) is picked randomly and it is shown that for any of the chosen initial conditions

the proposed controller meets the control specifications.
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A. Simulations Setup

Let XC := S
3×{(ω1, ω2, ω3) ∈ R

3 : |ωi| ≤ 2
√
ū}. One can easily show (the proof is omitted due

to space limitations) that set XC is globally attractive and positively invariant for the closed-loop

system. Thanks to this fact, it is enough to pick initial conditions in set XC to show that the

proposed controller yields global convergence. After an initial condition is chosen, the controller is

to be initialized. Particular care needs to be applied in performing this operation: any simulation

initial condition (q0, ω0) can be seen as the actual initial conditions of the system or as the state of

the spacecraft some time after it entered XC , being initialized outside set XC . This ambiguity in

the interpretation of each simulation initial condition can lead to different initialization of automata

H(δ) and Ai(pi, h). The following strategy is adopted: any time one of the automata could be

initialized to multiple different states because of this issue, the automata is initialized randomly.

Control parameters pi were selected the same for all the automata, i.e., pi = p = (δ1, δ2, κ), for

all i = 1, 2, 3, with δ1 = 1 · 10−4, δ2 = 5 · 10−4 and κ = 0. Supervisor hysteresis parameter has been

selected to δ = 0.04.

Each simulation is stopped when all three automata are at state qi3, i.e., u⋆
i (q

i
3) = 0 and (ǫi, ωi) ∈

B̄δ2(0) for all i. If the controller successfully triggers the simulation’s stop condition the initial

condition under study is included into the basin of attraction of the controller. A total of 6000

simulations was performed.

Remark V.1 In practice one can pick δi2 = δ2 > 0, for all i = 1, 2, 3, and choose the value of

δ2 knowing that the controller will steer the state (q, ω) into a neighborhood U = {(q, ω) : |η| >
η̃, ‖ω‖2 < ω̃} of (q, ω) = (±1, 0), with η̃ ≈

√

1− 3(δ2)2 and ω̃ ≈ 2
√
3ūδ2. Parameters δi1 must

be picked such that δi1 ∈ (0, δ2), for all i = 1, 2, 3. In practice, the numerical value of δi1 affects

only the controller switching frequency in a neighborhood of (ǫi, ωi) = (0, 0). Parameter δ can be

chosen arbitrarily small so as to reduce the size of the neighborhood on which the controller might

induce unwinding, i.e., η ∈ (−δ,+δ). Notice, however, that as δ decreases the controller becomes

less robust with respect to sensor noise.

B. Controller Performance

The performance of the proposed controller is evaluated through two main sets of parameters.

The first set of parameters is meant to provide an insight into the overall ability of the controller

to meet the control specifications and to evaluate the controller’s performance during the transient.

Each simulation solution is uniformly sampled every ∆t = 0.001. A sampling time is denoted by

tk, with k ∈ {0, 1, . . . N}, where N is the total number of samples in a simulation. The following

performance measures are recorded:

– Success Rate (SR): SR records the percentage of simulations in which the proposed con-

troller successfully triggered the simulation stopping condition.

– Root Mean Square of the angular velocity error (eω): eω =
√

1
N

∑N
k=0 ‖ω(tk)‖22;

– Root Mean Square of the principal angle error (eφ): eφ =
√

1
N

∑N
k=0 |φ(tk)|2 where

φ(tk) denotes the principal angle associated to the spacecraft attitude at time tk;

– Total number of state transitions in automaton H(δ);

– Non-dimensional simulation time T .

The second set of parameters is meant to provide an insight into the performance of the on-board

thrusters. For each simulation, the following quantities are recorded

– Number of switches of each control torque τi (ni).
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– Mean switching frequency of each control torque τi (fi): fi is computed as the mean

of the controller switching frequency at each time step tk of the simulation, fi(tk). fi(tk)

is computed as the number of switches performed by control torque τi in the time window

∆tk = [tk −∆, tk +∆], with ∆ = 0.5 (dimensionless).

C. Results

The success rate obtained across the simulations has been SR = 1.0. Hence, for any initial

condition tested in XC , the controller has successfully steered each (ǫi, ωi) to B̄δ2(0). We believe

that the large volume of simulations, combined with the randomness in the selection of initial

conditions presents compelling evidence to the claim that the proposed controller solves the bang-

bang attitude control problem globally. The mean, maximum and minimum of quantities eω, eφ, T

across all the simulations performed (T can be easily converted to seconds by multiplying it by

scale factor
√

J0/(10τ̄)) are presented in Table 1. These results will be used as benchmark when

analyzing the performance of the controller during the transient when external perturbations and

measurement noise are considered.

Table 1: Mean, Max and Min of eω, eφ, T across all the simulations performed.

eω eφ, rad T

Mean across all simulations 0.3205 3.3116 12.459

Max across all simulations 0.4679 6.2192 19.6507

Min across all simulations 0.09 0.0682 2.3834

In Table 2 the statistical analysis of the switching behavior induced by the controller is presented.

In particular, we focus on the mean, maximum and minimum of the number of switches and of the

controller switching frequency across all the simulations performed.

Table 2: Mean, Max and Min of ni, fi with i ∈ {1, 2, 3} across all the simulations performed.

n1 n2 n3 f1 f2 f3

Mean across all simulations 6 6 6 0.4736 0.4732 0.4733

Max across all simulations 48 34 39 3.31367 4.896 4.896

Min across all simulations 2 2 2 0.1447 0.1286 0.1286

Of particular interest is the analysis of the number of switches induced by the controller. One

can see from Table 2 that the minimum number of switches performed per channel is 2 as in the case

of the time-optimal controller for double-integrators. The maximum number of switches correspond

to situations in which one of the initial conditions (ǫi(0), ωi(0)) is initialized very close to the origin.

In this case, (ǫi, ωi) bounces between switching sets Λ+
i and Λ−

i until the rest of the state has

converged sufficiently close to the origin.

It is interesting to observe that only 8.88% of the simulations performed displayed a state

transition in automaton H(δ). Moreover, automaton H(δ) never performed more than one single

state transition. This seems to suggest that once (q, ω) ∈ XC , the anti-unwinding supervisor H(δ)

will switch the equilibrium to stabilize at most once.

In the following, the results for one of the simulations performed are presented so to provide

a better understanding of the controller performance. The initial conditions were randomly chosen

at q(0) = (0.6556,−0.3414,−0.6686,−0.2901) and ω(0) = (0.5410,−0.0496,−0.0809) (ω in non

dimensional). Since η(0) < −δ, automaton H(δ) is initialized at state h = −1. Automata Ai(p,−1)

are then initialized according to the rules presented in (4), with ξi = (−ǫi, ωi). In this case, the set

of initials states of the automata Ai(p,−1) is {q12 , q21 , q31}, which implies that u⋆ = (+ū,−ū,−ū).
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The trajectories of states (ǫi, ωi), with i = 1, 2, 3, are shown in Figures 4 to 6. It is immediate to

notice that the proposed controller steers each (ǫi, ωi) to a neighborhood of (ǫi, ωi) = (0, 0). Figure

7 clearly shows that the controller steers the spacecraft state (q, ω) to a neighborhood of (1, 0), in

that η(t) is steered towards +1. Automaton H(δ) undergoes a single state transition −1 → +1 to

prevent the insurgence of unwinding. As shown in Figure 7, η overshoots past the threshold η ≥ δ,

triggering the state transition −1 → +1 in automaton H(δ). After the transition, the low-level

controller stabilizes what is now the “closest” equilibrium in X, i.e., (1, 0), instead of forcing the

state back to (−1, 0). This clearly shows how the action of supervisor H(δ) prevents the insurgence

of unwinding in the closed loop dynamics. The state transition of H(δ) is indicated in the figures

by a star symbol.
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Fig. 4: Trajectory of (ǫ1(t), ω1(t)). The star identifies the transition −1 → +1 in automaton H(δ).
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Fig. 5: Trajectory of (ǫ2(t), ω2(t)). The star identifies the transition −1 → +1 in automaton H(δ).

Figure 8 shows the switching history of the three control inputs on-off state ui. Clearly, the

proposed controller successfully avoids the generation of high-frequency switching behaviors.

VI. Robustness with Respect to Measurement Noise

This section presents a Monte Carlo numerical investigation of the robustness properties of

the proposed controller against measurement noise. Let (q̂, ω̂) denote the measured state. When

measurement noise is considered, automata H(δ) and Ai(pi, h), with i = 1, 2, 3, undergo state

transitions when the measured states η̂ and ξ̂i = (hǫ̂i, ω̂i) satisfy the state transition conditions,

instead of η and ξi = (hǫi, ωi). The quaternion measurements q̂ are generated as follows (see [19],

[20])

q̂ = (q̃ ⊕ q)/‖q̃ ⊕ q‖
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Fig. 6: Trajectory of (ǫ3(t), ω3(t)). The star identifies the transition −1 → +1 in automaton H(δ).

Notice how in this case a switch in the control input value is triggered as H(δ) switches value of

parameter h. As h is set to +1, ξ3 = (ǫ3, ω3) immediately meets the transition condition that

triggers the jump q31 → q32 .
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t
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Fig. 7: Time history of state η. The red star identifies the transition −1 → +1 in automaton H(δ).

If the action of the supervisor is prevented, the proposed controller would force the state back

towards (−1, 0), generating unwinding.

where [q̃ ⊕ ] is defined as

[q̃ ⊕ ] =











η̃ ǫ̃3 −ǫ̃2 ǫ̃1

−ǫ̃3 η̃ ǫ̃1 ǫ̃2

ǫ̃2 −ǫ̃1 η̃ ǫ̃3

−ǫ̃1 −ǫ̃2 −ǫ̃3 η̃











.

Vector q̃ is generated as q̃ = (1/2δq,+1) where δq ∈ R
3 is sampled from a zero-mean Gaussian

distribution with covariance σ2
q = (0.001) I deg2.

The angular velocity measurements are generated as ω̂ = ω + δω where δω ∈ R
3 is sampled from

a zero-mean Gaussian distribution with covariance σ2
ω = (9 · 10−8) I (ω is non-dimensional). Pa-

rameters δ1 and δ2 were taken with values δ1 = 1 · 10−3 and δ2 = 3 · 10−3. In this case, particular

care must be adopted in choosing parameters δ1, δ2 so to avoid the insurgence of high-frequency

switching at the origin. An in-depth analysis of this issue can be found in [8]. A total of 6000

simulations was performed, obtaining a success rate of SR = 1.0. The results of the numerical study

are summarized in Table 3 and 4.

It can be seen from Table 3 that the performances indices characterizing the closed-loop behavior

of the system during the transient are comparable to the nominal performances presented in Table
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Fig. 8: Controller switching history.

Table 3: Mean, Max and Min of eω, eφ, T across all the simulations performed.

eω eφ, rad T

Mean across all simulations 0.3202 3.3166 12.4208

Max across all simulations 0.4677 6.1878 20.7325

Min across all simulations 0.0603 0.0246 1.6827

Table 4: Mean, Max and Min of ni, fi with i = 1, 2, 3 across all the simulations performed.

n1 n2 n3 f1 f2 f3

Mean across all simulations 5.2630 5.4278 5.3617 0.4111 0.4241 0.4240

Max across all simulations 31 30 34 2.6013 2.4305 2.4305

Min across all simulations 1 2 1 0.0859 0.1198 0.1198

1. This suggests that that the performance degradation induced by the presence of measurement

noise is minimal. The number of switches and the switching frequency (see Table 4) also remain

comparable to the nominal case (see Table 2). The decrease in the mean number of required switches

to meet the control specifications is easily explained by the fact that the values for parameter δ1
and δ2 were chosen larger than in the nominal case. Notice that in this case the minimum number

of switches for channels one and three is only 1: this corresponds to cases in which one of the (ǫi, ωi)

enters B̄δ1(0) directly without ever entering any of the switching sets Λ+
i , Λ−

i .

VII. Robustness with Respect to External Perturbations

In this section a numerical analysis is proposed that investigates the robustness of the proposed

controller with respect to external bounded perturbations. Following a similar approach to the one

outlined in Section IV, one can prove that the proposed controller locally solves the bang-bang

attitude control problem even under the effects of small external perturbations (we omit the proof

due to space limitations). Since the proposed analysis is local, this result can also be applied to show

that the proposed controller solves the bang-bang attitude control problem for inertially asymmetric

rigid bodies.
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This section investigates the performances of the proposed controller when applied to an asymmetric

rigid spacecraft perturbed by gravity-gradient torques. Consider the system

ǫ̇ = 1
2 (ηI + S(ǫ)) Ω

η̇ = − 1
2ǫ

TΩ

JΩ̇ = S(JΩ)Ω + τ + τg,

(11)

with J = diag(100, 120, 140) kg · m2 and τ̄i = 1 N · m for all i. Control parameters ūi = τ̄i/Ji
are then given by the triple (ū1, ū2, ū3) = (0.01, 0.0083, 0.0071)1/s2. Torque τg denotes the gravity-

gradient torque perturbing the spacecraft rotational dynamics. The spacecraft is assumed to be

flying along a LEO circular orbit of radius Rc = 6671 km, inclination of π/6 radians, longitude of

the ascending node of π/3 radians and argument of perigee of π/4 radians. Let n =
√

µ/R3
c , where

µ = 3.98 · 1014 m3/s2 is the Earth standard gravitational constant. The gravity gradient torque

τg ∈ R
3 is given by

τg = 3n2

(

rs
‖rs‖

)

×
(

J
rs
‖rs‖

)

,

where rs is the position vector of the spacecraft with respect to Earth written in frame B. As

done in Section V, the simulations’ initial conditions are picked from set S
3 × {(Ω1,Ω2,Ω3) ∈ R

3 :

Ωi ∈ [−2
√
ūi,+2

√
ūi]} (however, in this case, the set is no longer positively invariant and globally

attractive). The performance of the controller has been tested as the spacecraft moves along the

orbit. In particular 100 simulations were performed every π/6 radians along the orbit, for a total

of 1200 simulations. Parameters δ1, δ2 were chosen as δ1 = 2 · 10−4 and δ2 = 6 · 10−4. The success

rate over the set of simulations was SR = 1.0. The results are summarized using the performance

metrics introduced in the Section V.

Table 5: Mean, Max and Min of eω, eφ, T across all the simulations performed.

eω, rad/s eφ, rad T, s

Mean across all simulations 0.0932 3.3055 44.1678

Max across all simulations 0.1344 6.1708 69.2408

Min across all simulations 0.0241 0.0740 8.6581

The results in Table 5 can be compared to the nominal performance of the controller presented

in Table 1 by using the scaling factor
√

J2/(10τ̄) = 3.4641 s. This corresponds to scaling the

results so to provide an estimate of the performance of the proposed controller when controlling a

symmetric spacecraft with τ̄ = 1 N · m and J0 = J2 = 120 kg · m2. This gives us the opportunity

to evaluate the effects of external perturbations and asymmetries of the spacecraft on the controller

performance during the transient. Notice, however, that in the two simulations different values of

δ1 and δ2 were used. Moreover, the sampling time used to sample the solutions is changed by the

scaling factor
√

J2/(10τ̄). The results are presented in Table 6.

Table 6: Mean, Max and Min of eω, eφ, T across all the simulations performed for a symmetric

spacecraft with τ̄ = 1 N · m and J0 = 120 kg · m2.

eω, rad/s eφ, rad T, s

Mean across all simulations 0.0925 3.3116 43.1592

Max across all simulations 0.1351 6.2192 68.072

Min across all simulations 0.026 0.0682 8.2563

The data in Table 5 and 6 clearly show that the performance of the proposed controller remain

very close to the nominal performances when small external perturbations and asymmetries are

considered.
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Table 7: Mean, Max and Min of ni, fi with i = 1, 2, 3 across all the simulations performed.

n1 n2 n3 f1, 1/s f2, 1/s f3, 1/s

Mean across all simulations 8.4308 7.2208 5.9017 0.1879 0.1641 0.164

Max across all simulations 43 66 31 1.1997 1.8128 1.8128

Min across all simulations 2 2 2 0.0422 0.0422 0.0932

The results summarized in Table 7 show how, even in the worst scenarios, the required thrusters

switching frequency is easily achievable given the state of today’s technology. It is also interesting

to notice how, on average, n1 > n2 > n3. This can be easily explained by noticing that since

J1 < J2 < J3, then ū1 > ū2 > ū3. Hence, the closed-loop dynamics along the first axis tends to be

faster than the dynamics along the other axes. On average then, (ǫ1, ω1) will converge to the origin

faster the the other states. Automaton A1(p, h) will then be forced to turn on and off the associated

control torque a few times before the simulation’s stop condition is triggered. This also explains

the fact that in this case more control switches are required then in the nominal case presented in

Table 1.

VIII. Conclusions

The paper presents a novel hybrid bang-bang controller that solves the bang-bang attitude

control problem. The proposed controller successfully stabilizes any desired spacecraft attitude

without inducing high-frequency switching of the actuators. Extensive simulation analysis suggests

that the proposed controller may in fact yield global practical stability of the target spacecraft

attitude. It was also verified that the proposed controller solves the bang-bang attitude control

problem irrespective of external perturbations and measurement noise.

Appendix: Proofs of Lemma IV.1 and Lemma IV.2

Proof of Lemma IV.1 Let V +
ǫ = ∂V +/∂ǫ =: [V +

ǫ1 V +
ǫ2 V +

ǫ3 ], V
+
ω = ∂V +/∂ω =: [V +

ω1
V +
ω2

V +
ω3
]

where

V +
ǫi = ∂V +/∂ǫi =8ǫiωiσ(ǫi, ωi) +

4

3
ω3
i + 4σ(ǫi, ωi)

(

2ǫiσ(ǫi, ωi) +
1

2
ω2
i

)
3
2

V +
ωi

= ∂V +/∂ωi =4ǫ2iσ(ǫi, ωi) + 4ω2
i ǫ+

3

4
ω4
i σ(ǫi, ωi) + 2ωi

(

2ǫiσ(ǫi, ωi) +
1

2
ω2
i

)
3
2

.

(12)

V̇ + is then given by

V̇ + =
1

2
V +
ǫ (ηI + S(ǫ))ω + V +

ω u⋆(q1, q2, q3),

with u⋆(q1, q2, q3) = (u⋆
1(q

1), u⋆
2(q

2), u⋆
3(q

3)). By applying the Cauchy-Schwarz inequality we deduce

an upper bound on V̇ + as

V̇ + ≤
3
∑

i=1

(

1

2
ηωiV

+
ǫi + V +

ωi
u⋆
i (q

i)

)

+
1

2
‖V +

ǫ ‖2‖S(ǫ)‖2‖ω‖2.

It is left to compute an upper bound for 1/2‖V +
ǫ ‖2‖S(ǫ)‖2‖ω‖2. Let (V +

ǫ )⊤ be written as

(V +
ǫ )⊤ = 8w + 4/3y + 4z where w, y, z ∈ R

3 with wi = ǫiωiσ(ǫi, ωi), yi = ω3
i , zi =

σ(ǫi, ωi)
(

2ǫiσ(ǫi, ωi) + 1/2 ω2
i

)
3
2 , i = 1, 2, 3. Since ‖S(ǫ)‖2 =

√

1− η2, one can then write

1

2
‖V +

ǫ ‖2‖S(ǫ)‖2‖ω‖2 ≤ 1

2

√

1− η2
(

8‖w‖2 +
4

3
‖y‖2 + 4‖z‖2

)

‖ω‖2. (13)
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First ‖w‖2 is computed. It is immediate to show that ‖w‖2 ≤ ‖ǫ‖2‖ω‖2. By applying Young’s

inequality one show that the first term of (13) is bounded by

4
√

1− η2‖w‖2‖ω‖2 ≤ 2
√

1− η2(‖ǫ‖22 + a4‖ω‖44), (14)

where a > 0 such that ‖ω‖2 ≤ a‖ω‖4 (all p−norms are equivalent in R
n). A similar procedure can

be followed to show that ‖y‖2 ≤ ‖ω‖32. The second term of the bound in (13) is given by

1

2

(

4

3
‖y‖2

)

‖S(ǫ)‖2‖ω‖2 ≤ 2

3
a4
√

1− η2‖ω‖44. (15)

Lastly, a bound on the last term of (13). It is immediate to show that

‖z‖2 ≤

√

√

√

√

(

3
∑

i=1

2|ǫi|+
1

2
ω2
i

)3

≤ (2‖ǫ‖1 +
1

2
‖ω‖22)

3
2 .

By using the fact that (2‖ǫ‖1 + 1/2 ‖ω‖22)
1
2 ≤

√

2‖ǫ‖1 + 1/
√
2 ‖ω‖2 and since there exists b > 0

such that ‖ǫ‖1 ≤ b‖ǫ‖2 one can write the last term of the bound in (13), after repeated applications

of Young’s inequality, as follows

1

2
(2‖z‖2) ‖S(ǫ)‖2‖ω‖2 ≤2

√

1− η2
(

α̂‖ǫ‖22 + β̂‖ω‖44
)

, (16)

for some α̂, β̂ > 0. Using the expressions in Eq. (14) to (16) one can write

1

2
‖V +

ǫ ‖2‖S(ǫ)‖2‖ω‖2 < α
√

1− η2‖ǫ‖22 + β
√

1− η2‖ω‖44,

where α = 2(1 + α̂) and β = 8/3 a4 + 2β̂. It follows that

V̇ + ≤
3
∑

i=1

−λi(q, ωi, u
⋆
i (q

i)),

where −λi(q, ωi, u
⋆
i (q

i)) = 1/2 ηωiV
+
ǫi +V +

ωi
u⋆
i (q

i)+α
√

1− η2ǫ2i +β
√

1− η2ω4
i . This concludes the

proof of the lemma. �

Proof of Lemma IV.2 Consider the case η > δ, so that the supervisor output h = +1 is

broadcasted to automata Ai(pi, h), i = 1, 2, 3. Referring to Figure 9, define sets K+
i and K−

i , with

i = 1, 2, 3, as

K+
i ={(ǫi, ωi) : ǫi ≥ 0, −2

√
ǫi ≤ ωi ≤ −2

√
κiǫi} (17)

K−
i ={(ǫi, ωi) : ǫi ≤ 0, 2

√
−κiǫi ≤ ωi ≤ 2

√
−ǫi} (18)

where κi ∈ [0,+1) is the same parameter used in Section III to design the switching sets Λ+
i , Λ−

i .

Assume automaton Ai(pi,+1), is not in state qi3, i.e. u⋆
i (q

i) ∈ {−1,+1}. Since then ξi = (ǫi, ωi),

automaton Ai(pi,+1) can the generate the following non-zero control inputs:

1. u⋆
i (q

i) = −σ(ǫi, ωi) can be generated for any (ǫi, ωi);

2. u⋆
i (q

i) = +σ(ǫi, ωi) can be generated only if (ǫi, ωi) ∈ (K+
i ∪K−

i ).

Case 1 is studied first, i.e. it is assumed that u⋆
i (q

i) = −σ(ǫi, ωi). By applying the results

presented in [21], one can show that

1

2
ηV +

ǫi ωi − V +
ωi
σ(ǫi, ωi) = −η(4ǫ2i +

1

12
ω4
i )− (1− η)|V +

ωi
|.

Since −(1−η)|V +
ωi
| ≤ 0, then λi(q, ωi,−σ(ǫi, ωi)) ≤ −η(4ǫ2i+

1
12ω

4
i )+α

√

1− η2ǫ2i+β
√

1− η2ω4
i . It is

immediate to see that there exists η̄ ∈ (0,+1) such that for all η ∈ [η̄,+1], both −4η+α
√

1− η2 < 0
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K+

i

ǫi

ωi

K−

i

Fig. 9: Sets K+
i and K−

i with κi ∈ [0, 1).

and −1/12η + β
√

1− η2 < 0. It follows that if η ≥ η̄ then λi(q, ωi,−σ(ǫi, ωi)) < 0 for all (ǫi, ωi) 6=
(0, 0).

Consider case 2., i.e., u⋆
i (q

i) = +σ(ǫi, ωi) and (ǫi, ωi) ∈ (K+
i ∪K−

i ). It is immediate to verify

that if (ǫi, ωi) ∈ (K+
i ∪ K−

i ) then σ(ǫi, ωi)ǫi = |ǫi| and σ(ǫi, ωi)ωi = −|ωi|. Using this fact one

obtains that

1
2ηV

+
ǫi ωi + V +

ωi
σ(ǫi, ωi) = 4(1 + η)ω2

i |ǫi|+ 4ǫ2i +
(

3
4 + 2

3η
)

ω4
i−

2(1 + η)|ωi|(2|ǫi|+ 1
2ω

2
i )

3
2 .

(19)

It can be shown that if (ǫi, ωi) ∈ (K+
i ∪K−

i ) then |ωi|(2|ǫi| + 1/2ω2
i )

3
2 ≥ ω2

i (2|ǫi| + 1/2ω2
i ). Using

this fact in Eq. (19) allows us to conclude that

1

2
ηV +

ǫi ωi + V +
ωi
σ(ǫi, ωi) ≤ 4ǫ2i −

(

1

3
η +

1

4

)

ω4
i . (20)

Substituting Eq. (20) in the expression for λi(q, ωi, σ(ǫi, ωi)) implies that λi(q, ωi, σ(ǫi, ωi)) ≤
(

α
√

1− η2 + 4
)

ǫ2i +
(

β
√

1− η2 − 1/3η − 1/4
)

ω4
i . If (ǫi, ωi) ∈ (K+

i ∪ K−
i ) then |ωi| is bounded

by 2
√

κi|ǫi| ≤ |ωi| ≤ 2
√

|ǫi|. It follows that λi(q, ω, σ(ǫi, ωi)) ≤ g(η)ǫ2i , where g(η) =
(

α
√

1− η2 + 4 + 16β
√

1− η2 − (1/3η + 1/4) 16κ2
i

)

. It is immediate to see that there exists κ̄i < 1

such that for all κi ∈ (κ̄i,+1), g(η = +1) < 0. By continuity of g(η), there exists η̄ < 1

such that g(η) < 0 for all η ∈ [η̄,+1]. It follows that if η ≥ η̄, then λi(q, ωi, σ(ǫi, ωi)) ≤ 0

and λi(q, ωi, σ(ǫi, ωi)) = 0 if and only if ǫi = 0. Notice that since we are considering the case

(ǫi, ωi) ∈ (K+
i ∪K−

i ), ǫi = 0 if and only if ωi = 0 as well.

This concludes the proof of the lemma. �
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