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Abstract— Sequences of different drugs have shown potential
to improve treatment strategies for cancer. Typical switched
system approaches model the population dynamics of each drug
independently, not rigorously considering the effects of pre-
treatment or drug-drug interactions. In this paper, a general
model family incorporating pre-treatment effects and biological
domain knowledge is proposed, and a model from this family
is identified by using a novel experimental data set of two-
drug sequences. Leveraging the data, a simulator for the cell
population dynamics under sequences of up to nine drugs is
developed and used to empirically evaluate the performance
of a set of closed-loop drug scheduling controllers. We used
the controllers to identifying promising drug schedules in silico
and evaluated them in vitro. The experiments validated the
effectiveness of the identified schedules in reducing the number
of living cells to less than 10% of the initial. While only
treating with certain toxic drugs achieves similar effectiveness,
the schedules use toxic drugs for significantly shorter times
which likely reduces toxicity to non-cancer cells.

I. INTRODUCTION

Understanding and predicting the response of cancer cell
populations or other sources of disease, such as bacteria or
viruses, to different treatments is important for improving
therapeutic strategies. Therefore, the mathematical modeling
of cancer cell populations and their response to varying
doses of targeted drugs is an active research area [1]. It is
known that combinations of drugs acting synergistically can
improve the effectiveness and specificity of therapies [2], [3].
Moreover, past studies report that these synergistic effects
depend on the time and sequence in which the drugs are
applied [4], [5]. Hence, the application of multiple drugs in
a sequence has the potential to effectively stabilize the cancer
population while minimizing toxicity [6] and mitigating the
risk of developing drug resistance [5], [7].

A core challenge for realizing this potential is to identify
promising schedules amongst the combinatorial amount of
drug combinations and sequence timings. Prior experiments
focus on identifying synergistic or antagonistic effects of
drugs with two-drug sequences by comparing the final cell
counts. The drug pairs are selected based on biological do-
main knowledge, or recently by leveraging high throughput
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Fig. 1: Time-series data from experiments of the response
of breast cancer cell populations to two drugs (Trametinib
and NLi) applied sequentially (t=0, t=72h) compared to
exponentially growing untreated cells (DMSO). The lines
represent the mean of 6 replicate wells, and the shaded areas
the standard deviation. Observe, that the population dynamics
after NLi treatment are different when applied at time 0
compared to after 72 hours of Trametinib pre-treatment.

screening of combinations of 100 drugs [8]. However, even
with high throughput screening, this trial-and-error approach
is limited in evaluating the combinatorial space of possible
drug schedules. Treating the cell population as a dynamical
system enables the use of control tools to identify promising
schedules in silico which can then be tested in vitro.

Our previous work modeled the cancer cell population
response to a sequence of drugs as a switched dynamical
system, using data of the response to a single drug to
identify the dynamics [9]. One of the key assumptions for
the resulting drug schedules to asymptotically reduce the cell
population to zero was that the error due to neglecting drug-
drug interactions is sufficiently small. In this paper, we model
the indirect interaction of drugs through pre-treating cells
with one drug, before treating with a second and thereby
improve upon our former approach by using newly available
time-series data of a population’s response to sets of two
drugs applied sequentially. As expected, the data indicates
that the population’s response to a given drug can be altered
by pre-treatment with a different drug (Fig. 1).

Developing mathematical models and control strategies of
the response of cancer cell populations to drugs in sequence,
taking into account the effect of pre-treatment, is an open
research area. In this paper, we use data of breast cancer
cell populations treated with 9 drugs in various two-drug



treatment schedules, where each condition lasts 72 hours.
We use this novel data set to quantify how the cell popu-
lation dynamics differ when drugs are applied in different
orders, develop mathematical models that incorporate these
differences, and leverage these models for simulation and the
identification of promising drug schedules.

Related Work. Previous work has been done on modeling
cell populations as linear or nonlinear systems [6], [7].
Also, many strategies have been explored to mathematically
identify optimal treatment regimens to manage cancer, HIV,
and other illnesses [10], [11] where it is especially important
to minimize drug dose. Control strategies that result in
more efficient treatment (for example, less total drug volume
applied) for a single drug can be found by solving linear ma-
trix inequalities using convex optimization techniques [10].
The type of model used for cell populations or dynamics
can also vary widely, including biological networks [10],
[12], nonlinear models [11], [13], systems of linear ordinary
differential equations [14], or stochastic hybrid models [15].
Previous work has shown that combinations of drugs can be
particularly effective for avoiding the onset of drug resistance
in cancer treatment by exploiting phenotypic state transitions
[5]. Formulating treatment as a control problem has the
potential to mitigate the trade-off of drug efficacy versus
toxicity. The problem of modeling the effect of applying a
set of drugs in a sequence is well suited for representation
as a switched system. There has been extensive work on the
stability and control of these systems [16], [17].

Contributions. Motivated by the effect of pre-treatment,
we suggest a general family of dynamics models (Sec.
III) that incorporates both pre-treatment effects and various
types of domain knowledge. The most suitable model of
this family is identified (Sec. IV) using novel experimental
data of two-drug schedules (Sec. II). We use our models
of cell population dynamics under nine drugs to build a
simulator on which drug schedules can be tested in silico
(Sec. V). Further, we present initial work on designing
closed-loop drug schedule controllers (Sec. V) which we use
to identify promising drug schedules in silico. We evaluate
these schedules in vitro (in cell cultures in a laboratory). The
methods we develop can be applied to any switched system
in which the previous mode influences the dynamics in the
consecutive mode, if sufficient data of sequences is available.

II. CANCER CELL EXPERIMENTS AND DATA SET

In this section, we describe the cancer cell experiments
and the resulting time-series data set that is used for model
identification, which will be presented in (Sec. IV).

Sequential drug treatments were applied to the breast
cancer cell line SUM149PT, with the first drug administered
at time zero and the second drug at time 72 hours, after a
washout of the medium containing the first drug (see Fig.
1). To measure the effect of treatment on cell population
growth, wavelength-specific images were taken every 4 hours
using the IncuCyte ZOOM imaging and digital segmentation
system (Essen BioScience, Ann Arbor, USA). The two
available measurements are: 1) the number of living cells,

as the cells used were infected with a lentivirus labeling
each nucleus with red fluorescence and 2) the number of
dying cells using a green fluorescent marker for detecting
Caspase 3/7 cleavage during apoptosis i.e. cell death (only
for schedules involving the drugs BEZ235 and JQ-1).

46 unique two-drug treatment schedules were conducted
experimentally, each with 6-10 physically separate replicate
wells of cell populations, which we assume to be independent
and identically distributed. Using the drug vehicle dimethyl
sulfoxide (DMSO) as the baseline condition which simulates
normal untreated cell growth, the following nine treatment
schedules were applied for each pair of drugs: drug 1/DMSO,
drug 1/drug 1, drug 1/drug 2, drug 1/combination, drug
2/DMSO, drug 2/drug 2, drug 2/drug 1, drug 2/combination,
and combination/combination, where “combination” denotes
both drug 1 and drug 2. Our experiments include the fol-
lowing pairs of drugs: 1) BEZ235 (a PI3K/mTOR inhibitor)
& JQ-1 (a BET inhibitor), 2) Trametinib (a MEK inhibitor)
& a nuclear lamin inhibitor (NLi), 3) Trametinib & a PARP
inhibitor, 4) Trametinib & BRD4 inhibitor A, 5) Trametinib
& BRD4 inhibitor B, 6) Trametinib & BRD4 inhibitor C.

The time-series data set was constructed by exporting the
measured number of cells from each well at a given time
point when an image was taken. This data set consists of 46
treatment schedules with 6-10 replicate wells and 36 time-
series data points per well.

III. MATHEMATICAL MODELING

In this section, we present a family of mathematical
models and the rationale for the modeling choices.

A. Model Family

We represent the evolution of a cancer cell population
under a drug schedule as a an uncertain, discrete-time, time-
invariant, switched linear auto-regressive dynamical system,
with the state at time step t ∈ N+ represented by the n
dimensional non-negative state vector xt ∈ Rn+. In this paper
we consider n ∈ {1, 2} and the discrete time steps are 4h
apart (i.e. treal=t · 4h). For n=1 the state vector xt contains
the numbers of living cells xt=[#living], and for n=2 addi-
tionally the number of dying cells xt=[#living,#dying]T ,
taken from the available measurements (Sec. II). We chose
this high-level state representation as it is useful for control,
explicitly abstracting away from the complexity of modelling
cell-level Pharmacodynamics. The current state xt depends
on the p previous states (xt−1, xt−2, . . . , xt−p). A drug
schedule, denoted by σ, is a mapping from time step t to
the most recent drug applied at or before time step t, hence
∀t σ[t] ∈ D, t ∈ N+, where D is the set of available
drugs. The model also accounts for additive process noise,
a multiplicative term that represents the uncertain effect of
pre-treatment on the cell population dynamics, and temporal
differences in drug activity. An element of the family of
mathematical models over a finite time horizon of T time
steps is denoted by a tuple (Ntw, p, n, C) with the number
of time windows per drug Ntw, the number of states n, the



auto-regressive order p, and the constraints C. The models
are of the following form:

xt =

p∑
i=1

Aiσ[t] · ξ
i
σ[t],t · xt−i + ησ[t],t, (1)

where the system matrices Aiσ[t] ∈ Rn×n represents the
influence of the ith previous state on the current state
after application of drug σ[t] in a treatment-naive setting.
Treatment-naive is defined as the condition in which the
cancer cell population has not been exposed to treatment
before the current treatment, namely σ[t] is the first drug
applied. In contrast, post-treatment refers to the condition
in which the cancer cell population has been treated with
another drug before the current drug. For n = 2, Aiσ[t] is a
matrix of the form

Aiσ[t] :=

[
Aiσ[t],00 Aiσ[t],01
Aiσ[t],10 Aiσ[t],11

]
∈ R2×2

where Aiσ[t],kl for k, l ∈ {0, 1} models the influence of the ith

previous number of living (l = 0)/dying (l = 1) cells on the
number of current living (k = 0)/dying (k = 1) cells. The
drug-specific process noise is represented by ησ[t],t ∈ Rn.
The multiplicative term ξiσ[t],t ∈ R represents the uncertainty
in the change of the system dynamics under a drug σ[t] from
the treatment-naive to post-treatment conditions. Hence, we
refer to ξiσ[t],t as the post-treatment dynamics uncertainty.
Note that the term ξiσ[t],t is needed because our data does not
contain all possible drug sequences. We introduce constraints
C and time windows Ntw as additional parameters that allow
us to incorporate domain knowledge.

Constraints C on the system matrices (Aiσ[t])
p
i=1 encode

how states can affect each other. Observe that for xt ∈ R
the matrices (Aiσ[t])

p
i=1 are scalars hence we do not use

constraints in that case (C = {None}). For n = 2, xt ∈ R2

we consider three different sets of constraints on the system
matrices: a) no constraints, b) Aiσ[t],01 = 0, meaning the
number of dying cells does not influence the future number
of living cells, and c) Aiσ[t],01 = 0 and Aiσ[t],11 ≥ 0, where
the latter inequality forces the quantity of dying cells to
positively influence the quantity of future dying cells.

Time windows allow us to model the different modes of
drug activity. We divide the available 72 hours of respective
naive- and post-treatment measurements after drug applica-
tion into up to three equally-spaced time windows Ntw ∈
{1, 2, 3}. Ntw = 1 represents one mode of drug activity:
Tw = [0, 18] = {0, 1, . . . , 18} for the measurements from 0h
to 72h, for Ntw = 2 we have: T 1

w = [0, 9] and T 2
w = [9, 18]

and lastly for Ntw = 3: T iw = [6(i− 1), 6i] ∀i ∈ {1, 2, 3}.
Assumptions: We make the following modeling assump-

tions regarding η and ξ. The drug-specific process noise
ησ[t],t is assumed to normally distribution with zero mean
(µ = 0n) and a drug-specific diagonal covariance matrix
Λσ[t] ∈ Rn×n. After applying the first drug there is no post-
treatment dynamics uncertainty as the system matrices Aiσ[t]
represent treatment-naive dynamics, consequently ξiσ[t],t = 1
for i = 1, 2, . . . , p for all t following the first drug treatment
prior to the second drug treatment. From the first drug

switch, at the time step of the second drug treatment, onward
ξσ[t],t := (ξ1σ[t],t, ..., ξ

p
σ[t],t) takes on some value drawn at

the respective switching time step ts from a bounded drug-
specific distribution, denoted by Fσ[t], to reflect the uncertain
change in the drugs treatment-naive dynamics due to pre-
treatment. A drug switch is defined as σ[ts − 1] 6= σ[ts].
Hence, Aiσ[ts] · ξ

i
σ[ts],ts

represents the post-treatment dynam-
ics of the cancer cell population. ξσ[t],t is drawn only at the
respective switching time ts. Consequently, ξσ[ts],ts = ξσ[j],j
for all j after ts but prior to the next drug switch. We assume
the effect of pre-treatment to be modeled completely by the
multiplicative term ξσ[t],t (rational Sec. III-B).

We estimate the treatment-naive and post-treatment ma-
trices (Aiσ[t])

p
i=1, the covariance matrix Λσ[t] , and the

distribution of the post-treatment dynamics uncertainty Fσ[t]
for each drug σ[t] ∈ D using our time-series data set.

Note that because our data consists of two-drug schedules
to fit Fσ[t], which only models the interaction between the
current and the previous drug. This implicitly assumes that in
a sequence of more than two drugs e.g. A-B-C, the dynamics
under C are only influenced by the previous drug B and not
by A. This is biologically justified for some drug mechanisms
(e.g. the drug effect vanishes over time) but likely does not
hold for all mechanisms. However, it is the best we can do
with the data available.

B. Modeling Rationale

The choice of the model family is justified as follows:
(1) Cell divisions are inherently discrete and without

nutrient limits population growth is exponential. Linear
discrete-time auto-regressive models are sufficiently general
to represent such higher-order dynamical behavior while
remaining simple enough for parameter estimation, practical
computation, and efficient control.

(2) We decouple ησ[t],t and ξσ[t],t since these terms
represent two different sources of uncertainty: standard addi-
tive process noise and post-treatment dynamics uncertainty,
respectively. The post-treatment effect is uncertain as data
is only available for certain drug-drug sequences, hence to
predict likely effects for arbitrary schedules we model this
uncertainty as a distribution (details in Sec. IV-B.2). We
chose to model the dynamics uncertainty as multiplicative
term ξσ[t],t instead of more expressive alternatives such addi-
tive terms for each matrix element, because the multiplicative
method requires only one parameter, and our data set is
not currently large enough to identify 4 unique parameters
required for the additive method.

(3) The model family allows for the incorporation of
domain knowledge. Knowledge about how the past number
of living/dying cells influence the future numbers can be
captured in the form of constraints on elements of the system
matrices Aiσ[t]. Moreover, pharmacological knowledge about
the temporal variation of drug activity can be incorporated
by having multiple, temporally sequenced models of type (1)
that represent sequential modes of drug activity. We consider
two effects, firstly drugs often have a temporal delay until
maximum drug activity is observed and secondly that drug



activity decreases after some time [18]. Hence we divide the
72 hour time frame over which a specific drug is active in
Ntw ∈ {1, 2, 3} time windows.

IV. SYSTEM IDENTIFICATION

This section details the identification procedure and re-
spective results for the system matrices (Aiδ)

p
i=1, the process

noise covariance matrix Λδ , and the distribution of the post-
treatment dynamics uncertainty Fδ for each drug δ ∈ D.

A. System Matrices

1) System Identification Methodology: We identify the
system matrices (Aiδ)

p
i=1 for a specific drug δ ∈ D on

a set of training wells WTrain using a least-squares loss.
Note that for every drug δ there is one treatment-naive
condition and multiple post-treatment conditions. We denote
their respective system matrices by Aiδ,Naive and Aiδ,Post.

The respective drug- and condition-specific experimental
measurements are split randomly into the two disjoint sets,
WTrain and WTest, where the latter contains two wells and
the former contains 4-8 wells (≈ 66-80% of all available
wells WTotal = WTrain ∪ WTest). For example, we use the
experimental data summarized in the upper curve of Fig.
1 until Ts = 18 (72 hours) to estimate (Aiδ,Naive)

p
i=1 for

δ = Trametinib, whereas we use the data in the lower curve
after ts = 18 (72 hours) to estimate (Aiδ,Post)

p
i=1 for the NLi

post-treatment condition. Under our assumption of additive
zero-mean Gaussian process noise, the least-squares loss can
be derived from the maximum likelihood inference principle
[19]. Recall that an element of the model family is fully
specified by a tuple of four variables (Ntw, p, n, C). For a
given drug δ ∈ D with data from the set WTrain, we fit the
model for the time window Tw = [TL, TU] by solving the
following least-squares regression problem:

(Aiδ)
p
i=1 =arg min

(Aiδ)
p
i=1

∑
w∈WTrain

TU∑
t=TL+p

‖xt,w −
p∑
i=1

Aiδ · xt−i,w‖22,

where (Aiδ)
p
i=1 are subject to the set of constraints C, xt,w ∈

Rn+ is the measurement at time step t from well w, and TL
and TU are the lower and upper bounds for the given time
window, respectively. Observe that ξδ,t is not present above.
The estimation of ξδ,t will be presented in Sec. IV-B.

After we fitted the drug-specific naive and post-treatment
system matrices to the training data WTrain, we evaluated how
well the resulting model generalizes to unseen test data WTest
by calculating the mean-squared-error (MSE) on the numbers
of living cells in the respective time window. The numbers
of dying cells were not always measured, and quantifying
the numbers of living cells is more important for control,
as we wish to drive these cells to zero. We calculate the
MSE between the measured counts and k-step predictions
using the identified system matrices. To compute k-step
predictions, p values of the time-series are taken and the
identified dynamics (1) are used to predict the k-following
counts of living cells. Fig. 2 shows the predictions of the
(Ntw=1, p=2, n=1, C=None) model for k = 3. We want
to choose a high k because the simulator and controllers,

Fig. 2: The measured number of living cells from three wells
of the JQ1/BEZ experiment data set (JQ1 given at t=0, BEZ
at t=18 i.e. 72h). Additionally, the 3-step predictions of the
second-order auto-regressive model with one time window
per drug (Ntw=1, p=2, n=1, C=None) that has been fitted
on the other seven wells are shown.

which will be presented in Sec. V, rely on predicting the cell
population dynamics over multiple time steps. We choose
k = 3 as our metric of comparison as three steps is the
maximum amount to allow for a fair comparison (i.e. with
Ntw = 3, p = 3 the time window is six steps long).

To get the best possible estimate of generalization per-
formance, cross-validation for all combinations of two test
wells out of WTotal is performed.

2) System Identification Results: This section presents the
cross-validation results on the experimental data set and their
interpretation to justify the selection of a suitable model from
the family of system models (Sec. III-A). A total of 36 mod-
els, each specified by a tuple (Ntw, p, n, C), were evaluated
by varying the following four parameters: the number of
time windows per drug Ntw ∈ {1, 2, 3}, the number of states
n ∈ {1, 2}, the auto-regressive order p ∈ {1, 2, 3}, and the
constraints C ∈ {None, Ai01 = 0, Ai01 = 0 &Ai11 ≥ 0}.

The cross-validation results presented are aggregated
across a subset of two-drug schedule experiments for which
the xt ∈ R2, because the number of dying cell measurement
is not available for all experiments (Sec. II). We fit a (Ntw,
p, n, C)-model to both the treatment-naive part of the
experiment (i.e., from 0 hours to 72 hours), and to the
post-treatment part (i.e., from 72 hours to 144 hours). For
example, Fig. 2 shows the performance of the (Ntw = 1,
p = 2, n = 1, C = None)-model on three unseen test wells
for the JQ1-then-BEZ experiment.

The cross-validation results are summarized in Fig. 3.
While they are over a subset of experiments, the same anal-
ysis was also performed with n=1 over all 46 experiments.
Moreover, to study the best model for individual two-drug
schedule experiments (e.g. for JQ1/BEZ a specific model
tuple might perform well but not for the BEZ/JQ1 experi-
ment) the analysis was also performed for the experiments
individually. While the exact 3-step MSE values are different,
the qualitative conclusions are consistent, and we summarize
these conclusions in the following.

(1) Our experimental results indicate that increasing the
number of time windows Ntw reduces the testing 3-step MSE
by an order of magnitude. This result is aligned with the
biological domain knowledge that drugs have multiple phases



1 State 2 State 1 State 2 State 1 State 2 State
1 2 3

8
9

100

2

3

4

5

6
7
8
9

1000

2
1 timewindow per drug
2 timewindows per drug
3 timewindows per drug

constrained
unconstrained

Autoregressive Order

3
st
ep
 M
S
E 
liv
in
g 
ce
ll 
co
un
ts

Fig. 3: Goodness of fit in terms of 3-step prediction mean-
squared-error (MSE) cross validation for different models
(Ntw, p, n, C) on the JQ1, BEZ, DMSO combination data
set. Ntw ∈ {1, 2, 3} is the number of time-windows per drug,
n ∈ {1, 2} the number of states, p ∈ {1, 2, 3} the auto-
regressive order, and C ∈ {None, constrained}. The y-axis
is in logarithmic scale.

of effectiveness (Sec. III-B).
(2) We found that increasing the auto-regressive order

from p = 1 to p = 2 essentially halves the MSE. Increasing
the order from p = 2 to p = 3 does not yield a clear
benefit, since MSE decreases for Ntw = 2 but increases for
Ntw = {1, 3}. The latter suggests overfitting of the model.

(3) Our results show that constraining the system matrices
for n = 2 has a small effect on MSE. We observe that out
of the three constraints studied C ∈ {None, Ai01 = 0, Ai01 =
0 &Ai11 ≥ 0}, the latter two result in the same MSE, hence
the Ai11 ≥ 0 constraint is not active and only Ai01 = 0
matters. The constraint supports generalization for p ≥ 1,
Ntw ≥ 1 but hurts performance for the other models.

(4) We found that increasing the number of states n ∈
{1, 2} seems to have small and largely deteriorating effects
on MSE. Only for p = 1 generalization performances
improves when modeling the number of dying cells (n = 2).

In summary, increasing the auto-regressive order p and
the number of time windows Ntw improve the model per-
formance, while the effects of n and C are small and
ambiguous. An important aspect to consider when choosing
a model is the balance between the goodness of fit (measured
by MSE) and the complexity of the dynamics model (in terms
of the number of parameters Nparam), which is the classic
bias-variance trade-off. The number of parameters for the
system matrices is Nparam = Ntw ·p ·n2−n ·Iconstrained, where
Iconstrained = 1 if C contains {Ai01 = 0} and zero otherwise.
We choose n = 1 and thereby C = None because n = 2 does
not consistently improve the fit, and for many drugs only
n = 1 measurements are available. We choose p = 2 because
our results indicate that for p = 3 the models overfit to the
training data as discussed above. For the number of time
windows, although Ntw ∈ {2, 3} has superior performance,
we choose Ntw = 1 since this reduces the complexity of
the model for simulation and control (Sec. V). We will
investigate models capturing the time-dependence of drug
activity in future work. Hence, we choose (Ntw =1, p=2,

n=1, C=None), which will be considered fixed hereafter.

B. Estimation and Results for Λδ and Fδ
1) Process Noise Covariance Matrix Λδ: The n process

noise variances vj j ∈ {1, 2} as the elements of the diagonal
Covariance Matrix Λδ ∈ Rn×n for a specific drug δ ∈ D are
estimated by computing the residuals

rw,t := xt,w −
p∑
i=1

Aiδ · xt−i,w (2)

Using the system matrices (Aiδ)
p
i=1 identified with the pro-

cedure described in Sec. IV-A. The residuals rw,t for all
w ∈ WTotal and across the respective time windows on
which the model was fitted t ∈ Tw = [TL, TU] resemble
a distribution, on which for each state j ∈ {1, 2}, a normal
distribution is fitted to obtain the variances vj .

2) Post-treatment Dynamics Uncertainty Distribution Fδ:
The multiple sets of post-treatment dynamics system ma-
trices (Aiδ,Post)

p
i=1 of a drug can be estimated using the

procedure described in Sec. IV-A. We can think of the ma-
trices (Aiδ,Post)

p
i=1 as multi-modal, each mode corresponding

to a different pre-treatment drug. These different modes can
be observed in Fig. 4 which shows the different identified
dynamics comparing treatment-naive PARPi, PARPi-after-
Trametinib, and PARPi-after-PARPi.

Our experimental data for a specific drug δ only provides
measurements for certain post-treatment conditions (drug-
drug sequences). Hence, to estimate the distribution of likely
post-treatment dynamic shifts Fδ , we make two assumptions:
a) the post-treatment dynamics of δ for other drugs or
application times are similar to the ones observed in our
experiments, and b) the post-treatment dynamics for unseen
post-treatment conditions are unknown, so ξδ,ts is sampled at
each drug switch ts to estimate the dynamics (Aiδ,Post)

p
i=1 =

(Aiδ,Naive · ξδ)
p
i=1. These assumptions are necessary due to

limited data and are reflected in the estimation procedure
for Fδ , which is done via bootstrapping. The two steps for
obtaining Nδ,post samples of ξδ , where Nδ,post is the number
of experiments in which δ is given as second drug are:

1) Estimate (Aiδ,Naive)
p
i=1 and the Nδ,post different

(Aiδ,Post)
p
i=1 using bootstraps on the wells of the treat-

ment naive and post-treatment conditions experiments.
2) Calculate for each of the Nδ,post post-treatment ma-

trices (Aiδ,Post)
p
i=1 an ξδ = (ξ1δ , . . . , ξ

p
δ )T using ξiδ =

arg minξiδ ‖A
i
δ,Naive · ξiδ −Aiδ,Post‖22 for i ∈ {1, . . . , p}

Repeating this procedure 1000 times yields a distribution
of 1000 · Nδ,post samples of the post-treatment dynamics
uncertainty ξδ to which we fit a kernel density estimator
to obtain Fδ . We sample from this kernel density estimator
in the simulator, which will be presented in Sec. V.

3) Estimation Results of Λδ and Fδ: We identified the
empirical covariance Λδ and distribution Fδ for each drug
δ using our chosen model of (Ntw = 1, p= 2, n= 1, C =
None). This was done to validate the Gaussian assumptions
on ηδ and get insight into the post-treatment uncertainty
distribution ξδ ∼ Fδ . We found that ηδ is Gaussian for
all drugs mostly with µ ≈ 0 and varying variances. For



Fig. 4: The forward predictions of the fitted models of PARPi
treatment-naive and two PARPi post-treatment conditions.
Note significant variation in the population dynamics.

ξδ,t = (ξ1δ,t, ξ
2
δ,t) ∼ Fδ the observed empirical Fδ shows a

strong correlation between ξ1δ and ξ2δ and is multi-modal for
most drugs. This aligns with the observed difference in post-
treatment dynamics dependent on the applied pre-treatment
drug for which Fig. 4 shows an example.

V. DESIGN OF DRUG SCHEDULING CONTROLLERS

This work aims is to identify promising treatment strate-
gies in silico, thereby guiding laboratory research on future
experiments and improving on the current trial-and-error
paradigm to discover drug synergies. This section presents
initial work in this direction. First, the design of our simulator
to test drug schedules is detailed. Then a set of approaches
for drug scheduling controllers are described and evaluated in
silico. Lastly, the in vitro results of promising drug schedules
identified with the controller in silico are presented.

A. Drug Schedule Simulator

The simulator models the number of living cells of a
cancer cell population step-wise with ∆t = 4h, at every step
σ[t] the newly or last applied drug is given as input. Given
a two measurement initial condition, the number of living
cells evolves according to Eq. (1) with system matrices and
drug-specific additive ησ[t]. Following the first drug treatment
σ[0], the treatment-naive matrices (Aiσ[t],Naive)

2
i=1 (ξσ[t] = 1)

are used. For the system matrices after the first and any drug
switch σ[ts−1] 6= σ[ts] thereafter there are two possibilities:

1) if the switch-specific post-treatment dynamics
(Aiσ[ts],Post)

2
i=1 are known, i.e. data for the drug

sequence σ[ts − 1]-then-σ[ts] is available, then those
(Aiσ[ts],Post)

2
i=1 are used

2) otherwise the best we can do is to sample ξσ[ts],ts ∼
Fσ[ts] and obtain the post-treatment dynamics as
(Aiσ[ts],Post)

2
i=1 = (Aiσ[ts],Naive · ξ

i
σ[ts],ts

)2i=1.

Note again that (Aiσ[ts],Post)
2
i=1 is determined at switching

time step ts and remains fixed until the next drug switch
occurs. We make two additional assumptions: a) once the
simulated number of living cells gets to or below zero, it
stays zero (xTDeath ≤ 0 =⇒ xj = 0 ∀j ≥ TDeath), and b)
the shortest possible time between two drug treatments is 12
hours/three time steps (ts′ − ts ≥ 3).

The simulator was tested on two-drug schedules for which
experimental data is available. The results resembled the
qualitative and quantitative behavior of the measurements.

B. Drug Schedule Control Approaches

To design a finite time drug schedule multiple competing
objectives have to be considered, we consider four: a)
increase the efficacy in reducing the number of cancer cells,
b) reduce toxicity to non-cancer cells, c) decrease the risk
of developing drug resistance, and d) infrequent switching
of drugs so that the drug schedule can be administered more
easily in practice. One possible approach is to formulate drug
scheduling as optimal control problem over the sequence
of drugs and switching times. However, the combinatorial
nature of the optimization and stochasticity in the dynamics
shift (Fδ) are challenging. Hence, for our initial exploration,
we introduce a baseline controller and four variants of a
heuristic based closed-loop controller.

1) Two-Drug Baseline Controllers: One natural approach
is to take the two most cytotoxic (able to kill cancer cells
fast) drugs and apply them alternately. Varying the number
of drug switches NS ∈ {1, 2, 8} over a finite time horizon
T and thereby the time between drug applications gives us a
set of reasonable open-loop baseline controllers (denote BL).

The highly effective drugs δ1, δ2 were chosen using the
simulator to simulate the number of living cells for every
drug in a naive-treatment setting without process noise over
10 time steps (40 hours). We found that the two drugs that
reduced the number of living cells the most are the combi-
nations δ1 = NLi & Trametinib and δ2 = JQ1 & BEZ.

2) Closed-Loop Controller: We explore closed-loop con-
trol approaches with two essential building blocks. First, the
decision if another drug should be given, and second if so
which drug should be given next (see Algorithm 1).

Algorithm 1: Pseudo-code Closed Loop Controller
Result: Observed cell counts: x, Drug sequence: σ
initialize cell experiment(xinit)
for t← 0 to T do

x, σ = cell experiment.get state()
if ẋ > 0 and ẍ > 0 and
σ[t] = σ[t− i] ∀i ∈ {1, 2, 3} then
next drug = select next drug(x, σ)
σ[t+ 1] = next drug

else
σ[t+ 1] = σ[t]

end
cell experiment.apply drug(σ[t+ 1])

end
return x, σ

To minimize toxicity and maximize drug switching times,
a new drug is only applied after at least 3 time steps after
the most recent drug and if accelerating growth is observed
(ẋ, ẍ > 0) or as a less conservative variant, when the
population is growing (ẋ > 0). We estimate ẋ, and ẍ with
finite difference methods. To reduce the risk of developing
drug resistance, the new drug has to be different than the
previous drug, so we need a drug selection mechanism. Two
different drug selection mechanisms select next drug(x, σ)
are tried: a) randomly sample from the set of drugs (which



Fig. 5: Two exemplary drug schedules and induced simulated
cell count for the ẋ controllers where the next drug is ran-
domly selected (top plot) and using H = 3 step look-ahead
(bottom plot). Vertical lines correspond to the application of
the respective drug and the colors after them signify that the
cell population evolves under the drugs’ influence.

we denote by R), and b) use the drug-specific treatment-
naive models to predict the population evolution H steps
forward and select the drug that has the lowest predicted
cell count after H steps (which we denote by LH for look-
ahead). Note that the latter is similar in spirit to the model
predictive control approach that [7] designs to mitigate HIV
mutation. This yields four distinct controllers: 1) ẋ, ẍ > 0
R, 2) ẋ > 0 R, 3) ẋ, ẍ > 0 LH, and 4) ẋ > 0 LH.

C. In silico Experiments to identify Promising Schedules

This section presents how we evaluate the set of proposed
controllers in silico, how identify promising drug schedules
in silico, and the results of in vitro experiments.

1) In silico Controller Evaluation: Fig. 5 shows example
trajectories of a cancer cell population for two ẋ > 0 closed
loop controllers: random and H = 3 step look-ahead next
drug selection for the same initial conditions. The controllers
were evaluated initializing the simulator with 24 different
realistic conditions, taken from our DMSO data sets for a
finite time horizon of 35 time steps (140h). For each initial
condition, 1000 runs were performed to account for the
sources of randomness: in drug selection, the process noise
ησ[t], and the sampled post-treatment dynamics uncertainty
ξσ[t]. The resulting trajectories x of the number of living
cells were evaluated according to five metrics. Three metrics
aim to capture efficacy: 1) final cell count xT , 2) the
percentage of trajectories %Success in which cell count reached
zero xT = 0, 3) the average time the count reached zero
Tdeath conditioned on xT = 0. We take the total number
of treatments applied NTreat (e.g. drug sequence Tram-NLi-
Tram-BEZ: NTreat = 4) as a measure of toxicity, assuming
each drug is equally toxic. Lastly, the maximum number of
repetitions of a drug NRep (e.g. for Tram-NLi-Tram-BEZ-
NLi NRep = 2) is a proxy for the risk of developing drug
resistance as multiple applications of a drug may increase
the probability of resistance. Table I contains the mean and
standard errors across all runs and metrics.

Our results indicate that the look-ahead drug selection rule
increases efficacy in terms of %Success, while a stricter rule to
determine when to switch (considering ẋ but not ẍ) decreases
NTreat, which is proxy for toxicity. While the NS = 1

Controller xT %Success Tdeath[h] NTreat NRep
ẋ, ẍ > 0 R 74±.9 45 85±.3 4.0 1.3
ẋ > 0 R 61±.8 47 83±.3 4.5 1.4
ẋ, ẍ > 0 LH 71±.9 62 73±.2 4.1 1.8
ẋ > 0 LH 66±.9 66 73±.2 4.7 2.1
BL NS = 1 181±.6 4.4 61±.7 2.0 1.0
BL NS = 2 985±29 26 108±.3 3.0 2.0
BL NS = 8 164±6 51 82±.3 9.0 5.0

TABLE I: Empirical evaluation of controllers with mean and
standard error over 24000 runs on five metrics: final cell
count xT , percentage of successful treatment %Success, if suc-
cessful time until 0 living cells Tdeath, number of treatments
used NTreat, and the maximum number of repetitions of a
drug NRep. For the last two columns the standard error is
omitted as it was below 0.02 and similar for all controllers.

baseline performs well in terms of Tdeath, NTreat, and NRep,
its efficacy in terms of %Success = 4.4% is by far the worst.
The preferred controller depends on the relative weight of
the objectives, however, our results suggest the preliminary
conclusion that the closed-loop controllers outperform the
baselines in terms of efficacy-toxicity balance.

2) Identification of Promising Schedules: Building on the
controller evaluation, we use the less restrictive ẋ > 0 look-
ahead controller to identify promising drug schedules which
are then evaluated in vitro in Sec. V-D. We obtain a set of
five promising schedules through the following three steps.
First, we create a diverse set of schedules by running the
ẋ > 0 look-ahead controller on the simulator 4 times for
each of 24 different realistic initial conditions for 35 time
steps (140h). After removing duplicates this leaves us with
95 schedules. Secondly, we evaluate the robustness of these
schedules in silico by running the stochastic simulator 100
times for each of the 24 initial conditions (2400 runs per
schedule), while tracking the metrics xT , %Success, and Tdeath.
Lastly, we compare the mean of those metrics across runs to
select a set of five schedules with high efficacy prioritizing
low xT and Tdeath and a high %Success. We only considered
schedules with four or fewer drugs and timings that are
realistic for 6-day experiments. The kill percentages %Success
of the selected schedules are in the range of 47-72%.

D. In vitro Evaluation of Identified Schedules
We evaluated the five identified schedules in vitro on the

breast cancer cell line SUM149PT starting the schedules
20h after plating and using 10 replicate wells per schedule.
Besides the regular DMSO control, we also ran a drug
control to test the response of the cancer population to
the drug combinations used by the schedules (BRD4i B &
Tram, BRD4i C & Tram, NLi & Tram, PARPi & Tram). To
evaluate the schedules and the simulator we compare the cell
count trajectories from the experiments with 100 trajectories
predicted by the simulator such as in Fig. 6.

The in vitro experiments confirmed the effectiveness of
the schedules as predicted by the high %Success in silico:
in all five schedules, the number of living cells decreased
significantly to less than 10% of the initial cell count.
The identified schedules achieve this by leveraging drug
combinations which are highly toxic on their own: from



Fig. 6: Experimental and simulation trajectories for two drug
schedules identified as promising by in silico simulations.
The thin lines display the individual trajectories of the
10 experimental wells (blue) and from 100 simulator runs
(grey). Thick lines represent the median and the shaded areas
the range from min to max values of the trajectories.

the drug controls we find that treating with BRD4i B &
Tram, BRD4i C & Tram, or PARPi & Tram over 140h is
similarly effective in reducing the cell count close to 10%
of the initial. The benefit of the identified schedules is that
these toxic drug combinations are applied for shorter times
(when a new drug is applied the old one is washed out) which
achieves our original goal of improving the efficacy-toxicity
balance. At the same time, this also reveals the limitation of
our assumption, that all drugs are equally toxic. To further
improve the efficacy-toxicity balance we aim to quantify drug
toxicity to healthy cells and develop controllers that take
toxicity into account e.g. in the form of a constraint.

Comparing the experimental data and the predictions of
the simulator as in Fig. 6, we observe that when the sequence
of pre- and post-treatment drugs for the schedule were in the
initial data, the simulator predictions capture the qualitative
behavior well (e.g. top Fig. 6). When the sequence of pre-
and post-treatment drug is unknown, hence ξδ ∼ Fδ is
sampled, the additional stochasticity leads to highly varying
predictions in the simulator (e.g. bottom Fig. 6), which
can be interpreted as uncertainty. Note that the median
prediction still captures the qualitative behavior measured in
experiments. This leads us to two conclusions guiding our
future work: Firstly, the extrapolation to unseen sequences
of pre- and post-treatment drug via distributions such as
Fδ seems promising to capture the range of interaction
effects while the median captures the qualitative behavior.
Secondly, to improve the quantitative predictions and reduce
the uncertainty we need to model a) time-dependence of drug
activity, especially if drugs follow shortly after each other (as
in Fig. 6), and b) drug-induced permanent changes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a general model family in-
formed by biological domain knowledge that accounts for
uncertainty induced by pre-treatment. A suitable model was
identified using data of two-drug experiments. Further, we
presented a set of closed-loop controllers that outperform a
two-drug alternating baseline in in silico simulation. Lastly,
the best closed-loop controller is used to suggest promising
schedules which were evaluated in biological experiments.
As the next steps, we aim to improve the mathematical
model by a) capturing permanent drug-induced changes, and
b) time-dependence of drug activity. Furthermore, quantifi-
cation of toxicity will allow us to design controllers that
explicitly take toxicity into account. The code can be found
at https://github.com/MariusWiggert/DrugScheduleOpt.
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[19] K. J. Åström and P. Eykhoff, “System identification-A survey,” Auto-
matica, 1971.

https://github.com/MariusWiggert/DrugScheduleOpt
http://arxiv.org/abs/1901.08513

	Introduction
	Cancer Cell Experiments and Data Set
	Mathematical Modeling
	Model Family
	Modeling Rationale

	System Identification
	System Matrices
	System Identification Methodology
	System Identification Results

	Estimation and Results for  and F
	Process Noise Covariance Matrix 
	Post-treatment Dynamics Uncertainty Distribution F
	Estimation Results of  and F


	Design of Drug Scheduling Controllers
	Drug Schedule Simulator
	Drug Schedule Control Approaches
	Two-Drug Baseline Controllers
	Closed-Loop Controller

	In silico Experiments to identify Promising Schedules
	In silico Controller Evaluation
	Identification of Promising Schedules

	In vitro Evaluation of Identified Schedules

	Conclusion and Future Work
	References

