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Abstract— Motivated by our prior work on a Triple Negative
breast cancer cell line, the focus of this paper is controller
synthesis for cancer treatment, through the use of drug schedul-
ing and a switched dynamical system model. Here we study a
cyclic schedule of d drugs with maximal waiting times between
drug inputs, where each drug is applied once per cycle in any
order. We suppose that some of the d drugs are highly toxic
to normal cells and that these drugs can shrink the live cancer
cell population. The remaining drugs are less toxic to normal
cells and can only reduce the growth rate of the live cancer cell
population. Also, we assume that waiting time bounds related
to toxicity, or to the onset of resistance, are available for each
drug. A cancer cell population is said to be stable if the number
of live cells tends to zero, as time becomes sufficiently large.
In the absence of modeling error, we derive conditions for
exponential stability. In the presence of modeling error, we
prove exponential stability and derive a settling time, under
certain mathematical conditions on the error. We conclude the
paper with a numerical example that uses models which were
identified on Triple Negative breast cancer cell line data.

I. INTRODUCTION

Building mathematical models of the response of cancer
cell populations to a particular drug is an active area of
research [1], [2], [3], [4], [5]. However, analyzing the effects
of drugs individually yields insights that are not always clin-
ically useful. For example, in a prior study on the response
of the Triple Negative breast cancer cell line, HCC1143,
to various targeted therapeutics, only one of the drugs, the
equal-ratio Trametinib+BEZ235 combination, demonstrated
the potential to kill cancer cells effectively [4], [5]. This
drug is not expected to work in practice due to toxicity
concerns [6], [7], [8], transient rather than long-term effi-
cacy [9], low rate of response [10], and negative secondary
reactions [8], [11]. Fortunately, recent evidence suggests that,
if carefully designed, drug schedules have the potential to be
effective methods for cancer treatment; e.g., see [1] and [3].

In this paper, we assume that linear time-invariant (LTI)
models of the response of cancer cell populations to different
drugs are given, as such models have been identified in prior
work; e.g., see [4] and [5]. We suppose that there are some
drugs that can shrink the live cancer cell population, but are
very toxic to healthy cells. In addition, there are other drugs
that only slow the growth of the live cancer cell population,
but are less toxic to healthy cells. While applying any drug
in the first group repeatedly should eradicate the cancer, we
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suppose that this is impractical due to toxicity concerns,
negative secondary reactions, or the development of drug
resistance. The less toxic drugs, on the other hand, cannot
kill the cancer alone, but they do reduce the cancer growth
rate and are better tolerated by the patient. We further assume
that longer waiting times between treatments are preferable:
they correspond to fewer in-patient hospital visits, which
may suggest higher patient convenience and lower healthcare
costs.

Given LTI models of the response of cancer cell pop-
ulations to various drugs, we seek to address a controller
synthesis problem for cancer treatment. The system that we
analyze is a population of cancer cells subject to therapeutic
intervention, and the control input is how the available drugs
are administered (e.g., drug type, order of application, and
time between treatments). Our goal is to stabilize the live
cancer cell population, meaning to drive the number of live
cancer cells to zero, as time becomes sufficiently large. The
focus of this paper is the analysis of schedules composed of
drugs with varying toxicities and long waiting times between
treatments, using a switched dynamical system model of
drug-treated cancer cells.

Stability and controller synthesis of switched sys-
tems has been well-studied in the literature (e.g.,
see [12], [13], [14], [15], [16]). Further, the synthesis of drug
schedules for HIV treatment has been posed as the optimiza-
tion of control laws for switched systems [17], [18], [19].
Inspired by these works, we consider the following problem
at the intersection of switched systems and cancer treatment.

Contributions. We propose the use of a cyclic schedule of
d ∈ N drugs, where each drug is applied once per cycle in
any order. Some of the d drugs, I, can shrink the live cancer
cell population but are extremely toxic to healthy cells. Other
less toxic drugs, J , can only slow the growth of the live
cancer cell population. We provide an upper bound on the
cancer growth rate in response to a single drug, using the
matrix norm induced by the vector L1-norm and a particular
matrix structure from our previous work (Lemma 1). We
derive a set of maximal waiting times between drug inputs,
under the assumption that waiting time bounds representing a
measure of toxicity to normal cells, or the onset of resistance,
are given for each drug (Lemma 2). This assumption is
justified in part by the limited efficacy of using one therapy
to treat certain cancers. In the absence of modeling error, we
show that a cyclic schedule with a set of maximal waiting
times stabilizes the live cancer cell population exponentially
(Theorem 1). Further, we prove that if the modeling error
is bounded and if the product of the errors in each cycle



is sufficiently small, then a cyclic schedule with a set of
maximal waiting times also induces exponential stability
(Theorem 2). Using this last result, we derive a loose upper
bound on the amount of time required for the population to
settle to a small size (Corollary 1).

This paper offers substantive novel contributions beyond
those of our previous papers, [4] and [5]. The focus of the
current paper is the analysis of drug schedules in terms
of switched systems, using the models that we developed
in [4] and [5]. In particular, Chapman et al. proposes a drug
schedule based on the eigenvectors and eigenvalues of the
models [4]. Risom et al. studies the biology of breast cancer
and uses the models to convey biological insights [5].

The paper is structured as follows. Sec. II summarizes the
switched dynamical system model of a drug-treated cancer
cell population. Sec. III presents the preliminary results:
Lemma 1 and Lemma 2. Sec. IV provides the main results:
Theorem 1, Theorem 2, and Corollary 1. Sec. V presents
a numerical example that uses models that were trained on
HCC1143 cell line data. Brief conclusions are in Sec. VI.
Notation is provided below.
• Rp×q+ is the set of p×q matrices with real non-negative

entries.
• N = {1, 2, . . . } is the set of natural numbers.
• N0 = {0, 1, 2, . . . } is the set of natural numbers

including zero.
• Πp

i=1A(i) = A(p)A(p−1) · · ·A(2)A(1) is a product of
p matrices.

• dye is the ceil function, and byc is the floor function.

II. MATHEMATICAL MODEL

A cancer cell population can be partitioned into a finite
number of classes, called phenotypic states. A phenotypic
state is a set of observable traits that arises from the synthesis
of proteins and that has important implications for drug
response; e.g., see [1] and [2]. In this paper, we model a
drug-treated cancer cell population as a switched linear time-
invariant dynamical system,

x̃(t+ 1) = Ãδt x̃(t); t ∈ N0, δt ∈ D,
x̃(0) = x̃0.

(1)

x̃ ∈ Rn+ is the non-negative cell type vector; x̃ =
[x̃1, . . . , x̃n]T with x̃i ≥ 0 for each i. If i < n, then x̃i
is the number of live cells in phenotypic state i. x̃n is the
number of dead or dying cells in total. D is the set of drugs,
and |D| = d. Ãδt ∈ Rn×n+ is the dynamics matrix for drug
δt ∈ D. If δt = j, then we say that drug j is active at time
t. The duration of the discrete-time interval, [t, t+ 1), is the
period between two consecutive measurements.

The dynamics matrix of (1), Ãδ ∈ Rn×n+ , takes the
form [4][5],

Ãδ =


α1 ρ21 . . . ρp1 0
ρ12 α2 . . . ρp2 0

...
...

. . .
...

...
ρ1p ρ2p . . . αp 0
ρ1D ρ2D . . . ρpD 1

 , (2a)

αi := ρi − ρiD −
∑p
s=1,s 6=i ρis; i = 1, . . . , p, (2b)

p := n− 1. (2c)

The parameters, ρi = ρi(δ), ρiD = ρiD(δ), and ρij = ρij(δ)
are defined in Table I. Ãδ is subject to a set of linear
constraints, which are provided in Table II. Eq. (2) is derived
by assuming that a live cell can divide, transition, or die
on the discrete-time interval, [t, t + 1); please see our prior
work [4], [5].

Because the division parameters are equal and the death
gains are equal (Table II), the ith diagonal entry of Ãδ for
i = 1, . . . , p takes the form,

αi(δ) = µδ −
∑p
s=1,s6=i ρis(δ), (3a)

such that

µδ = ρ1(δ)− ρ1D(δ) = . . . = ρp(δ)− ρpD(δ). (3b)

The focus of this paper is the problem of stabilizing the
live subsystem of (1),

x(t+ 1) = Aδtx(t); t ∈ N0, δt ∈ D,
x(0) = x0,

(4)

such that x = [x̃1, . . . , x̃p]
T , and Aδt is the first p rows and

p columns of Ãδt ; see (1)-(3). We assume without loss of
generality that x0 is non-zero.

TABLE I
DYNAMICS PARAMETERS FOR DRUG δ

Symbol Name Definition
ρi = ρi(δ) Division

parameter
Average ratio of the number of live cells
in phenotypic state i at time k+1, derived
from their own kind, to the number of live
cells in phenotypic state i at time k

ρiD = ρiD(δ) Death
gain

Average proportion of live cells in phe-
notypic state i at time k that begin to die,
or are dead, by time k + 1

ρij = ρij(δ) Transition
gain

Average proportion of live cells in phe-
notypic state i at time k that transition to
phenotypic state j by time k + 1; i 6= j

TABLE II
CONSTRAINTS ON Ãδ

Constraint Rationale
Each entry is non-negative. Eq. (1) is a positive system (see [20], Th.

2).
The last column is
[0, . . . , 0, 1]T ∈ Rn.

Dead/dying cells accumulate over time
and cannot come back to life.

ρi(δ) = ρ1(δ); i =
2, . . . , p

The fractions of dividing cells were
found to be consistent across the phe-
notypic states in HCC1143 populations,
treated with Trametinib, BEZ235, or the
equal-ratio Trametinib+BEZ235 combi-
nation [5].

Each off-diagonal entry is
less than or equal to 1.

Death gains and transition gains are pro-
portions; see Table I.

ρi(δ) ≥ 1; i = 1, . . . , p Cell division can only increase the live
cancer cell population; see Table I.

ρiD(δ) = ρ1D(δ); i =
2, . . . , p

Motivated by preliminary data analysis.

Refer to (2). Many of the above constraints are equivalent to those used in
our prior work [4], [5], and are included here for the reader’s convenience.



The dynamics matrices, {Ãδ}d∈D, need to be estimated
from time series data. Collecting such data can be a laborious
process, yielding a small number of samples for the purpose
of estimation. Until more data is readily available, we assume
linear time-invariance to promote parsimonious modeling.

The switched system assumes, in particular, that the re-
sponse to a drug applied at time t does not depend on the
drugs applied previously. This assumption is not valid usu-
ally. Our results on modeling error (Theorem 2, Corollary 1)
start to address the possibility of drug-drug interactions.

Eq. (1) is called a positive system because each element
of x̃ is non-negative [20]. Positive systems may make com-
putational tasks, such as estimation, more challenging due
to the presence of additional constraints. On the other hand,
positive switched systems may be useful for the optimization
of drug schedules; see [17], [18], [19], and the next section.

III. PRELIMINARY RESULTS

This section presents the preliminary results. In Lemma 1,
we derive an upper bound on the cancer growth rate, using
the matrix structure provided in (2) and (3).

Lemma 1: Let Aδ ∈ Rp×p+ be the first p rows and p

columns of Ãδ (2), whose diagonal entries are given by (3).
Then, the matrix norm of Aδ induced by the vector L1-norm
is µδ .

Proof:

||Aδ||1
= max
i∈{1,...,p}

{
|µδ −

∑p
s=1,s6=i ρis(δ)|+

∑p
s=1,s 6=i |ρis(δ)|

}
= max
i∈{1,...,p}

{
µδ −

∑p
s=1,s 6=i ρis(δ) +

∑p
s=1,s 6=i ρis(δ)

}
= µδ,

(5)
where the second line holds because each entry of Aδ is
non-negative.

Remark 1: If (3) is not assumed, then ||Aδ||1 =
max

i∈{1,...,p}
ρi(δ)− ρiD(δ).

Definition 1: kj ∈ N is the waiting time between the
application of drug j ∈ D and the application of the next
drug.
Lemma 2 provides a set of maximal waiting times between
treatments, under the assumption that waiting time bounds
related to toxicity, or to the onset of resistance, are available
for each drug. The waiting times, together with a drug
sequence, determine which drug is applied and when the
drug is applied. The waiting times are designed so that the
treatment regimen shrinks the live cancer cell population over
time, while limiting the toxicity to normal cells or avoiding
the onset of drug resistance.

Lemma 2: Suppose (Lj , Uj) ∈ N2 with Lj ≤ Uj
for j ∈ D. Let I = {i ∈ D : µi ∈ (0, 1)} and
J = {j ∈ D : µj ≥ 1} be non-empty. Assume β =

Π
i∈I

µUii Π
j∈J

µ
Lj
j ∈ (0, 1). Choose any ε ∈ [β, 1). Consider

the optimization program,

maximize
(kj)j∈D

∑
j∈D

kj

subject to Π
j∈D

(µj)
kj ≤ ε

kj ∈ [Lj , Uj ] ∩ N; j ∈ D.

(6)

Then, k∗i = Ui for all i ∈ I, and (k∗j )j∈J can be found
via Algorithm 1. Further, if I = {1} and J = {2}, then
k∗2 = min

(
U2, b log ε−U1 log µ1

log µ2

⌋)
.

Data: nl ∈ J s.t. µn1 ≤ µn2 ≤ · · · ≤ µnJ , J = |J |;
Result: (k∗j )j∈J ;
initialize q = J , knl = Unl for l = 1, . . . , J ;
while true do

if Π
i∈I

(µi)
Ui

J

Π
l=1

(µnl)
knl ≤ ε then

k∗nl = knl for l = 1, . . . , J ;
break;

else
if knq = Lnq then

q = q − 1;
end
knq = knq − 1;

end
end

Algorithm 1: Solves program (6) of Lemma 2.

Proof: Choose any (kj)j∈D satisfying the constraints
of (6). Because µi ∈ (0, 1) and ki ≤ Ui for all i ∈ I,

ε ≥ Π
i∈I

µkii Π
j∈J

µ
kj
j ≥ Π

i∈I
µUii Π

j∈J
µ
kj
j . (7)

Thus, k∗i = Ui ∀i ∈ I. Algorithm 1 initializes each kj (j ∈
J ) to be as large as possible. If this choice satisfies the
inequality constraint of (6), then the algorithm terminates. If
not, the algorithm decreases the waiting time associated with
the largest µj , kj , by 1. The algorithm starts with the largest
µj to obtain the largest reduction, µkjj ≥ µ

kj−1
j , possible.

If the kj reaches its minimum, the algorithm moves onto
the waiting time associated with the second largest µj . The
algorithm is guaranteed to terminate because β ≤ ε.

Finally, if I = {1} and J = {2}, then the inequalities
µU1
1 µL2

2 ≤ µ
U1
1 µk22 ≤ ε are equivalent to

L2 ≤ k2 ≤
log ε− U1 logµ1

logµ2
. (8)

Choose k∗2 as the largest value satisfying (8) and k2 ∈
[L2, U2] ∩ N.

Remark 2: In Lemma 2, β is the fastest possible decay
rate of the live cancer cell population per treatment cycle, if
each of the d drugs is applied once per cycle and the waiting
times are provided by (6).

IV. MAIN RESULTS

This section presents the main results. First, we define a
cyclic schedule of D as a sequence of drugs,

(l1m, l2m, . . . , ldm)
∞
m=1 , (9)



such that lim ∈ D is the ith drug applied in cycle m, and
∪di=1{lim} = D for each m. This means that each drug in
D is applied once per cycle, and the order of the drugs in
each cycle may vary. Fig. 1 illustrates a cyclic schedule of
D := {♦,�,4} with the waiting times, (klim)

3
i=1, for two

cycles; note that lim ∈ D and ∪3i=1{lim} = D for m = 1, 2.

Fig. 1. A cyclic schedule of three drugs, D := {♦,�,4}, with the
waiting times, (k♦, k�, k4), is shown for two cycles; see (9). For example,
l32 = � means that drug � is the third drug applied in cycle 2, and the
next drug will be applied k� time points later. Notice that each drug in D
is applied once per cycle and the order of the drugs in each cycle may vary.

A. Analysis in the Absence of Modeling Error

Theorem 1 says that, with no modeling error, a cyclic
schedule that uses the maximal waiting times derived in
Lemma 2 and an arbitrary ordering of the drugs in each cycle
will exponentially stabilize the live cancer cell population.

Theorem 1: Assume the conditions of Lemma 2, choose
any ε ∈ [β, 1), and let K := (kj)j∈D be a solution to (6).
Then, a cyclic schedule (9) with the waiting times, K,
stabilizes the system (4) exponentially at the decay rate per
cycle, ε.

Proof: Define Tp := p
∑
j∈D kj for p ∈ N0. Let m ∈

N. By induction on (4) and (9),

x(Tm) =
m

Π
c=1

(
(Aldc)

kldc · · · (Al2c)
kl2c (Al1c)

kl1c
)
x0,

(10)
such that lic ∈ D is the ith drug applied in cycle c. Take
the L1-norm of (10) and use ||Aδ||1 = µδ from Lemma 1 to
find,

||x(Tm)||1 ≤
m

Π
c=1

(
(µldc)

kldc · · · (µl2c)
kl2c (µl1c)

kl1c
)
||x0||1

=

(
Π
i∈D

µkii

)m
||x0||1,

(11)
because each drug is applied once per cycle. Since
Πi∈Dµ

ki
i ≤ ε by Lemma 2, we have

||x(Tm)||1 ≤ εm||x0||1. (12)

Define Km ∈ argmax {||x(t)||1 : t ∈ (Tm−1, Tm] ∩ N}. Be-
cause local maxima (or minima) only occur at times of drug
application, we have

x(Km) = (Alim)
klim · · · (Al2m)

kl2m (Al1m)
kl1m x(Tm−1),

(13)
such that lim ∈ D is the ith drug applied in cycle m and
i ∈ {1, . . . , d}, by (4) and (9). Define U <∞ such that

U ≥ Π
j∈D′

µ
kj
j ∀D′ ⊂ D. (14)

Take the L1-norm of (13) and use ||Aδ||1 = µδ from
Lemma 1 to obtain,

||x(Km)||1
≤ (µlim)

klim · · · (µl2m)
kl2m (µl1m)

kl1m ||x(Tm−1)||1
= Π
j∈D′

(µj)
kj ||x(Tm−1)||1

≤ U ||x(Tm−1)||1,
(15)

where D′ = {l1m, l2m, . . . , lim} in the second line. Finally,
use (12) with (15) to see that

||x(Km)||1 ≤ U ||x(Tm−1)||1 ≤ Uεm−1||x0||1. (16)

Because 0 < ε < 1, ||x(Km)||1 → 0 exponentially with
decay rate ε, as m → ∞. Since ||x(Km)||1 is a maximum
on cycle m, the proof is complete.

B. Analysis in the Presence of Modeling Error

The remaining results allow for modeling error. An im-
portant source of modeling error arises because how the
cancer responds at the current time to the most recent drug
input likely depends on the prior treatment regimen, but the
models, {Ãδ}δ∈D, are typically identified separately. Drug δ
is applied to a cancer cell population that has not been treated
before, and the model, Ãδ , is identified from the time series
data in response to that drug. Because the experiments are
laborious, one would like to conduct the least number of
experiments, specifically one experiment per drug, and then
use the models identified from the experiments to predict
drug schedules that could be more effective than standard
regimens. Using the machinery of switched systems, we
sequence the models together, knowing that when the models
are used in this way error arises, and we ask, what are mild
conditions on the error under which stability is attained.

More formally, suppose that the dynamics of the drug-
treated live cancer cell population are time-varying,

x(t+ 1) = Aδt(t)x(t); t ∈ N0, δt ∈ D,
x(0) = x0,

(17a)

where x0 is non-zero without loss of generality. The dy-
namics matrix, Aδt(t), quantifies the effect of applying drug
δt ∈ D at, or before, time t in addition to the effect of
the prior treatment regimen: the ordering and the timing of
the drugs applied before drug δt. Suppose that the dynamics
matrix of Eq. (17a), Aδt(t), is related to the dynamics matrix
of Eq. (4), Aδt , through the bounded multiplicative error,
ξδt(t) ∈ (0, E], as follows,

||Aδt(t)||1 = ||Aδt ||1 ξδt(t)
= µδt ξδt(t),

(17b)

where the second line holds by Lemma 1. Multiplicative error
is mathematically convenient for quantifying the distance
from the origin because the state, x, is determined by matrix
multiplication; see (17a). While the dynamics matrix, Aδt(t),
and the multiplicative error, ξδt(t), are functions of the
prior treatment regimen, we do not write these dependencies
explicitly to simplify notation.



Remark 3: System (17) reduces to the error-free sys-
tem (4) if ξδt(t) = 1 ∀t ∈ N0.

Remark 4: If ξδt(t) > 1, then the error has a de-
stabilizing effect. If ξδt(t) < 1, then the error has a
stabilizing effect. If ξδt(t) = 1, then the error has no effect.

We would like to find mild conditions on the modeling
error, under which a cyclic schedule (with waiting times
given by Lemma 2) stabilizes the live cancer cell population.
Next, we show that exponential stability is attained, if the
errors are bounded and if the error product in each cycle is
sufficiently small.

Theorem 2: Assume the conditions of Lemma 2, choose
any ε ∈ [β, 1), and let K := (kj)j∈D be a solution to (6).
Define Tp := p

∑
j∈D kj for p ∈ N0. If ξδt(t) ∈ (0, E]

∀t ∈ N0 for some E <∞, and if ∃η ∈ (ε,∞) such that

1

η
≥

Tm−1
Π

t=Tm−1

ξδt(t) ∀m ∈ N, (18)

then a cyclic schedule (9) with the waiting times, K, sta-
bilizes the system (17) exponentially at the decay rate per
cycle, ε

η .
Proof: Let m ∈ N. Use (17a) to find,

x(Tm) =

(
Tm−1

Π
t=0

Aδt(t)

)
x0. (19)

Take the L1-norm of (19) to obtain,

||x(Tm)||1 ≤
(
Tm−1

Π
t=0
||Aδt(t)||1

)
||x0||1

=

(
Tm−1

Π
t=0

µδtξδt(t)

)
||x0||1

=
m

Π
c=1

(
Tc−1

Π
t=Tc−1

µδtξδt(t)

)
||x0||1.

(20)

Because each drug j ∈ D is active for kj time points in
every cycle, we have

Tc−1
Π

t=Tc−1

µδt = Π
j∈D

(µj)
kj ∀c ∈ {1, . . . ,m}. (21)

Thus, (20) and (21) imply

||x(Tm)||1 ≤
(

Π
j∈D

(µj)
kj

)m m

Π
c=1

(
Tc−1

Π
t=Tc−1

ξδt(t)

)
||x0||1.

(22)
Since Πj∈D(µj)

kj ≤ ε by Lemma 2, we have

||x(Tm)||1 ≤ εm
m

Π
c=1

(
Tc−1

Π
t=Tc−1

ξδt(t)

)
||x0||1

≤ εm
(

1

η

)m
||x0||1,

(23)

where the second line holds by (18).
Let Km ∈ argmax {||x(t)||1 : t ∈ (Tm−1, Tm] ∩ N}. Be-

cause ||x(Km)||1 is a maximum on cycle m, it suffices to
show that ||x(Km)||1 → 0 exponentially with decay rate
ε/η, as m→∞.

Because the errors are bounded, ∃B <∞ such that

B ≥
τ

Π
t=Tm−1

µδtξδt(t) ∀τ ∈ (Tm−1, Tm − 1] ∩ N,

∀m ∈ N.
(24)

For example, if E ≥ 1, then B = ELΠj∈J (µj)
kj satis-

fies (24), where L =
∑
j∈D kj and J = {j ∈ D : µj ≥ 1}.

Eq. (17a) implies that

x(Km) =

(
Km−1

Π
t=Tm−1

Aδt(t)

)
x(Tm−1). (25)

Take the L1-norm of (25) to find,

||x(Km)||1 ≤
(
Km−1

Π
t=Tm−1

µδtξδt(t)

)
||x(Tm−1)||1

≤ B||x(Tm−1)||1

≤ B
(
ε

η

)m−1
||x0||1,

(26)

where the last line holds by (23).
Lastly, we provide a settling time result for the system (17)

subject to a cyclic schedule with waiting times given by
Lemma 2.

Definition 2: For any γ ∈ (0, 1), T is a γ-settling time for
system (17), if ||x(t)||1 ≤ γ||x0||1 for all t ≥ T .

Corollary 1: Assume the conditions of Lemma 2, choose
any ε ∈ [β, 1), and let K := (kj)j∈D be a solution to (6).
Let the system (17) evolve under a cyclic schedule (9) with
the waiting times, K. Let B < ∞ satisfy (24). Suppose
∃η ∈ (ε,∞) that satisfies (18). Then, for any γ ∈ (0, 1), a
γ-settling time is Kmγ , where

Kmγ ∈ argmax
{
||x(t)||1 : t ∈ (Tmγ−1, Tmγ ] ∩ N

}
Tmγ = mγ

∑
j∈D kj

mγ =

⌈
log γ − logB

log ε− log η
+ 1

⌉
, B > γ.

(27)

Proof: Take m ∈ N. By (26), we have

||x(Km)||1 ≤ B
(
ε

η

)m−1
||x0||1. (28)

Let Sm := B
(
ε
η

)m−1
||x0||1, and notice that (Sm)m∈N is

a decreasing sequence. Let γ ∈ (0, 1). It suffices to find
mγ ∈ N such that

||x(Kmγ )||1 ≤ B
(
ε

η

)mγ−1
||x0||1 ≤ γ||x0||1, (29)

because Kmγ is a γ-settling time; see that ||x(t)||1 ≤
||x(Kmγ )||1 ≤ γ||x0||1 for all t ≥ Kmγ . Choose B > γ;
we can do this because B is an upper bound. Use (29) and
recall ||x0||1 > 0, 0 < γ

B < 1, and 0 < ε
η < 1 to find,

B

(
ε

η

)mγ−1
≤ γ ⇐⇒

(mγ − 1) log

(
ε

η

)
≤ log

( γ
B

)
⇐⇒

mγ ≥
log γ − logB

log ε− log η
+ 1.

(30)

We choose mγ to equal the smallest natural number that
satisfies the last line above.



V. NUMERICAL EXAMPLE

In our previous work, cancer cell populations de-
rived from the Triple Negative breast cancer cell line,
HCC1143, were treated with a particular drug δ ∈ D =
{Trametinib+BEZ235, BEZ235, Trametinib} [5].1 Cell phe-
notype and cell death measurements were recorded every 12
hours over a 72-hour horizon following drug treatment [5].
So, the duration of the discrete-time interval, [t, t+ 1), is 12
hours; see (1). A drug-specific dynamics matrix of the form
of (2) and (3), Ãδ , was estimated from the data for p = 2
phenotypic states [5]. For each drug δ ∈ D, the dynamics
matrix for the live cancer subsystem (4), Aδ , was extracted
from Ãδ and is provided below,

AP =

[
0.755 0.081
0.169 0.843

]
, (31)

AB =

[
0.896 0
0.186 1.083

]
, (32)

AT =

[
1.030 0.231
0.022 0.821

]
, (33)

where drug P is Trametinib+BEZ235, drug B is BEZ235, and
drug T is Trametinib. Using (31)-(33), we find that ||AP||1 =
µP = 0.924, ||AB||1 = µB = 1.083, and ||AT||1 = µT =
1.052. Thus, I = {i ∈ D : µi ∈ (0, 1)} = {P} and J =
{j ∈ D : µj ≥ 1} = {B,T}.

In our example, we set Li := 2 (1 day) ∀i ∈ D, since
receiving treatment several times per day seems inconvenient.
We chose UP := 4 (2 days), UB := 8 (4 days), and UT := 6
(3 days) to illustrate a conservative scenario, since µP < 1
and 1 ≤ µT < µB. Thus, β = µUP

P µLB
B µLT

T = 0.947. We
set ε := 0.95, because ε ∈ [β, 1). We computed waiting
times using Lemma 2: kP = 4, kB = 2, and kT = 2. We
set η := 0.96, because η ∈ (ε,∞). We chose the errors,
ξδt(t) ∈ (0, E], to be pseudorandom values drawn from the
uniform distribution on the interval, [0.9, 1.5]; E = 1.5. The
upper bound, B = EL (µB)

kB (µT)
kT = 33.3, where L =

kP + kB + kT = 8 (4 days).
Fig. 2 shows an example simulation of the cancer sys-

tem (17) in response to a cyclic schedule of the drugs,
{P,B,T}, with the waiting times, (kP, kB, kT), for 40 cycles
(160 days).2 For example, if drug P is applied at time zero,
then x(kP) is given by,

x(kP) =

(
kP−1
Π
t=0

AP(t)

)
x0 =

(
kP−1
Π
t=0

ξP(t)AP

)
x0

=

(
kP−1
Π
t=0

ξP(t)

)(
kP−1
Π
t=0

AP

)
x0

=

(
kP−1
Π
t=0

ξP(t)

)
(AP)

kP x0.

(34)

1Trametinib+BEZ235 is an equal-ratio combination of Trametinib and
BEZ235 [5].

2MATLAB R2016b, The MathWorks, Inc., Natick, MA

Further, if drug T is applied next, then x(kP + kT) is given
by,

x(kP + kT) =

(
kP+kT−1

Π
t=kP

ξT(t)

)
(AT)

kT x(kP). (35)

We randomly chose an ordering of the three drugs for each
cycle. If (18) was not satisfied for any cycle, then the errors
for that cycle were regenerated. The initial condition, x0 :=
[220, 612]T , is the estimated number of live cells in each
phenotypic state at time zero averaged over fifteen samples,
where the data comes from [5].

In Fig. 2, the saw-tooth behavior arises mainly because
the cancer cell population shrinks following treatment with
Trametinib+BEZ235 (drug P) but grows following treatment
with the other two drugs. The simulation indicates that the
settling time derived in Corollary 1 is quite conservative.3 For
example, if γ := 1

10 , then mγ = 556 cycles, according to
Corollary 1. However, after about 19.5 cycles, the population
stays below one-tenth its original size in Fig. 2. Further,
the simulation shows that although the errors are similar in
magnitude throughout the time horizon, the size of the live
cancer cell population decays exponentially.

VI. CONCLUSIONS

In this paper, we studied a cyclic schedule composed
of drugs with varying toxicities, using a switched system
model of a cancer cell population. It is relatively easy to
identify a model of how a single drug affects a treatment-
naive population (a population that is receiving treatment for
the first time). But, it is not easy to predict how a sequence of
drugs affects the population, and it is not possible to evaluate
all schedules experimentally. A key contribution of this paper
is studying the modeling error that arises from treating a
cancer cell population again (possibly with a new drug). We
show that if the modeling errors are bounded, and if the
product of the errors over each cycle is below a particular
threshold, then exponential stability is guaranteed. Thus, we
tolerate some large errors, but the cumulative error over each
cycle must remain sufficiently small.

To use the current framework, an experimentalist would
first evaluate the modeling errors over each cycle for several
cycles to estimate η, and then use η to choose ε. The choice
of ε largely determines the waiting times between treatments.
Smaller ε implies longer exposure to the drugs that are more
toxic to healthy cells, I = {i ∈ D : µi ∈ (0, 1)}, and
faster decay of the cancer cell population. This points to an
important trade-off between toxicity and eliminating cancer.

Laboratory experiments are needed to better quantify
toxicity, validate our models, estimate the waiting time
bounds, and test our cyclic schedules. Pilot experiments are
in progress to examine the efficacy of drugs on previously
treated populations (with the same, or a new, drug), which
will inform our future models.

3The conservativeness arises because B is a worst-case upper bound.
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Fig. 2. An example simulation of the cancer system (17) in response
to a cyclic schedule of the drugs, {P,B,T}, with the waiting times,
(kP, kB, kT), for 40 cycles (160 days). Each vertical grid line denotes the
start of a cycle. Top: Normalized population size, ||x(t)||1||x0||1

, was plotted
at each time t of drug application. E.g., in the first cycle, if the drug
order was T first, B second, and P third, then ||x(t)||1||x0||1

was plotted at
t ∈ {0, kT, kT + kB, kT + kB + kP}. Middle: Error, ξδt (t), was plotted at
each time point t ∈ {0, 1, . . . , 319}. There are 320 time points in total,
since 40 cycles× 8 time points

cycle = 320. The duration of each discrete interval,

[t, t + 1), is 0.5 days. Bottom: Error product, ΠTm−1
t=Tm−1

ξδt (t), per cycle
m ∈ {1, 2, . . . , 40}. Note that each error product is less than or equal to
1
η

.
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