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Abstract— A classic reachability problem for safety of dy-
namic systems is to compute the set of initial states from
which the state trajectory is guaranteed to stay inside a
given constraint set over a given time horizon. In this paper,
we leverage existing theory of reachability analysis and risk
measures to devise a risk-sensitive reachability approach for
safety of stochastic dynamic systems under non-adversarial
disturbances over a finite time horizon. Specifically, we first
introduce the notion of a risk-sensitive safe set as a set of initial
states from which the risk of large constraint violations can be
reduced to a required level via a control policy, where risk is
quantified using the Conditional Value-at-Risk (CVaR) measure.
Second, we show how the computation of a risk-sensitive safe
set can be reduced to the solution to a Markov Decision Process
(MDP), where cost is assessed according to CVaR. Third,
leveraging this reduction, we devise a tractable algorithm to
approximate a risk-sensitive safe set and provide arguments
about its correctness. Finally, we present a realistic example
inspired from stormwater catchment design to demonstrate
the utility of risk-sensitive reachability analysis. In particular,
our approach allows a practitioner to tune the level of risk
sensitivity from worst-case (which is typical for Hamilton-
Jacobi reachability analysis) to risk-neutral (which is the case
for stochastic reachability analysis).

I. INTRODUCTION

Reachability analysis is a formal verification method based
on optimal control theory that is used to prove safety or
performance properties of dynamic systems [1]. A classic
reachability problem for safety is to compute the set of
initial states from which the state trajectory is guaranteed
to stay inside a given constraint set over a given time
horizon. This problem was first considered for discrete-
time dynamic systems by Bertsekas and Rhodes under the
assumption that disturbances are uncertain but belong to
known sets [2], [3], [4]. In this context, the problem is solved
using a minimax formulation, in which disturbances behave
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adversarially and safety is described as a binary notion based
on set membership [2], [3], [4, Sec. 3.6.2].

In practice, minimax formulations can yield overly conser-
vative solutions, particularly because disturbances are usually
non-adversarial. Most storms do not cause major floods, and
most vehicles are not involved in pursuit-evasion games.
If there are enough observations of the system, one can
estimate a probability distribution for the disturbance (e.g.,
see [5]), and then assess safety properties of the system in a
more realistic context. For stochastic discrete-time dynamic
systems, Abate et al. [6] developed an algorithm to compute
a set of initial states from which the probability of safety
of the state trajectory can be increased to a required level
by a control policy.! Summers and Lygeros [7] extended the
algorithm of Abate et al. to quantify the probability of safety
and performance of the state trajectory, by specifying that the
state trajectory should also reach a target set.

Both the stochastic reachability methods [6], [7] and the
minimax reachability methods [2], [3], [4] for discrete-time
dynamic systems describe safety as a binary notion based on
set membership. In Abate et al., for example, the probability
of safety to be optimized is formulated as an expectation of
a product (or maximum) of indicator functions, where each
indicator encodes the event that the state at a particular time
point is inside a given set [6]. The stochastic reachability
methods [6], [7] do not generalize to quantify the distance be-
tween the state trajectory and the boundary of the constraint
set, since they use indicator functions to convert probabilities
to expectations to be optimized.

In contrast, Hamilton-Jacobi (HJ) reachability methods
quantify the deterministic analogue of this distance for
continuous-time systems subject to adversarial disturbances
(e.g., see [1], [8], [9], [10]). Quantifying the distance between
the state trajectory and the boundary of the constraint set in
a non-binary fashion may be important in applications where
the boundary is not known exactly, or where mild constraint
violations are inevitable, but extreme constraint violations
must be avoided.

It is imperative that reachability methods for safety take
into account the possibility that rare events can occur with
potentially damaging consequences. Reachability methods
that assume adversarial disturbances (e.g., [1], [3]) suppose
that harmful events will always occur, which may yield
solutions with limited practical utility, especially in appli-

ISafety of the state trajectory is the event that the state trajectory stays
in the constraint set over a finite time horizon.



cations with large uncertainty sets. Stochastic reachability
methods [6], [7] do not explicitly account for rare high-
consequence events, as costs are evaluated in terms of an
expectation.

In contrast, in this paper, we harness risk measure theory
to formulate a reachability analysis approach that explicitly
accounts for the possibility of rare events with negative
consequences: harmful events are likely to occur at some
time, but they are unlikely to occur all the time. Specifically,
a risk measure is a function that maps a random variable Z
representing a loss, or a cost, into the real line, according
to the possibility of danger associated with Z [11, Sec.
6.3], [12, Sec. 2.2]. Risk-sensitive optimization has been
studied in applied mathematics [13], reinforcement learn-
ing [14], [15], [16], and optimal control [17], [18]. A risk-
sensitive method may provide more practical and protective
decision-making machinery (versus stochastic or minimax
methods) by encoding a flexible degree of conservativeness.

In this paper, we use a particular risk measure, called
Conditional Value-at-Risk (CVaR). If Z is a random variable
representing cost with finite expectation, then the Conditional
Value-at-Risk of Z at the confidence level o € (0,1] is
defined as [11, Equation 6.22],2

. 1
CVaR,[Z] := min {t + ~E[max{Z ~1,0}] } (1)
CVaR captures a full spectrum of risk assessments from
risk-neutral to worst-case, since CVaR,[Z] increases from
E[Z] to esssup Z, as « decreases from 1 to 0. CVaR
has desirable mathematical properties for optimization [19]
and chance-constrained stochastic control [20]. There is
a well-established relationship between CVaR and chance
constraints that we will use to obtain probabilistic safety
guarantees in this paper. Please see [12] and [21] for ad-
ditional background on CVaR.

Statement of Contributions. This paper introduces a risk-
sensitive reachability approach for safety of stochastic dy-
namic systems under non-adversarial disturbances over a
finite time horizon. Specifically, the contributions are four-
fold. First, we introduce the notion of a risk-sensitive safe set
as a set of initial states from which the risk of large constraint
violations can be reduced to a required level via a control
policy, where risk is quantified using the Conditional Value-
at-Risk (CVaR) measure. Our formulation explicitly assesses
the distance between the boundary of the constraint set and
the state trajectory of a stochastic dynamic system. This is an
extension of stochastic reachability methods (e.g., [6], [7]),
which replace this distance with a binary random variable.
Further, in contrast to stochastic reachability methods, our
formulation explicitly accounts for rare high-consequence
events, by posing the optimal control problem in terms of
CVaR, instead of a risk-neutral expectation. Second, we
show how the computation of a risk-sensitive safe set can
be reduced to the solution to a Markov Decision Process
(MDP), where cost is assessed according to CVaR. Third,

2Conditional Value-at-Risk is also called Average Value-at-Risk, which is
abbreviated as AV@R in [11].

leveraging this reduction, we devise a tractable algorithm to
approximate a risk-sensitive safe set and provide arguments
about its correctness. Finally, we present a realistic example
inspired from stormwater catchment design to demonstrate
the utility of risk-sensitive reachability analysis.

II. PROBLEM FORMULATION
A. System Model

We consider a fully observable stochastic discrete-time
dynamic system over a finite time horizon [4, Sec. 1.2],

(Ek+1:f(mkauk7wk)7 k:0717"'7N_]-7 (2)

such that z; € X C R" is the state of the system at time k,
ug € U is the control at time k, and wy € D is the random
disturbance at time k. The control space U and disturbance
space D are finite sets of real-valued vectors. The function
f: X xU x D — X is bounded and Lipschitz continuous.
The probability that the disturbance equals d; € D at
time k is Plwy = d;] = pj, where 0 < p; < 1 and
ijil p; = 1. We assume that wj, is independent of xy,
uy, and disturbances at any other times. The only source of
randomness in the system is the disturbance. In particular,
the initial state xy is not random. The set of admissible,
deterministic, history-dependent control policies is,

IT:= {(pos prs s piv—1) | gt Hy = U}, 3

where Hy, := X X ... x X is the set of state histories up
(k+1) times

to time k. We are given a constraint set L C X, and the
safety criterion that the state of the system should stay inside
K over time. For example, if the system is a pond in a
stormwater catchment, then x; may be the water level of
the pond in feet at time %, and K = [0,5) indicates that the
pond overflows if the water level exceeds 5 feet. We quantify
the extent of constraint violation/satisfaction using a surface
function that characterizes the constraint set. Specifically,
similar to [9, Eq. 2.3], let g : X — R satisfy,

reK < g(z) <0. 4

For example, we may choose g(x) = x — 5 to characterize
K =[0,5) on the state space X = [0, c0).

B. Risk-Sensitive Safe Sets

A risk-sensitive safe set is a set of initial states from which
the risk of large constraint violations can be reduced to a
required level via a control policy, where risk is quantified
using the CVaR measure. We use the term risk level to mean
the allowable level of risk of constraint violations. Formally,
the risk-sensitive safe set at the confidence level « € (0, 1]
and the risk level r € R is defined as,

S i={z e X | Wj(z,a) <r}, (52)

where

Wi (x, ) = min CVaR,[Z]], Z]:= k:%l’;?(?]v{g(:ck)},
(5b)



such that the state trajectory (zg,1,...,2n) evolves ac-
cording to the dynamics model (2) with the initial state
zo = x under the policy m € II. The surface function g
characterizes distance to the constraint set C according to (4).
The minimum in W{ is attained as stated below.

Lemma 1 (Existence of a minimizer): For any initial state
xo € X and confidence level a € (0, 1], 3 7* € II such that

CVaR, [ZF"| = inf CVaR,[Z7] = min CVaR,[Z7].
mell mell
Proof: Since U and D are finite, the set of policies
restricted to realizable histories from x is finite. [ |

C. Discussion

Computing risk-sensitive safe sets, as defined by (5), is
well-motivated. Our formulation incorporates different con-
fidence levels and non-binary distance to the constraint set.
In contrast, the stochastic reachability problem addressed by
Abate et al. [6] uses a single confidence level and an indicator
function to measure distance to the constraint set, in order to
quantify the probability of constraint violation. Specifically,
let ¢ € [0,1] be the maximum tolerable probability of
constraint violation (called safety level in [6]), and choose
a:=1,7:=¢€—1 and g(z) := 1g(z) — 3. Ag(z) =
lifx ¢ K;1g(z) = 0if x € K.) Then, the risk-sensitive
safe set (5) is equal to

{xeX

min B o Le(ow] S ©
which is the maximal probabilistic safe set at the e-safety
level [6, Egs. 11 and 13], if we consider non-hybrid dynamic
systems that evolve under history-dependent policies. (Abate
et al. considers hybrid systems under Markov policies [6].)

Further, S], encodes a higher degree of safety as r or o
decrease. Formally, for any 71 > 7 and 1 > a1 > a > 0,
we have §;2 C S;1. Another useful property is the following
relation to probabilistic safety at risk level r := 0.

Lemma 2 (Probabilistic safety guarantee): 1If © € 89,
then the probability that the state trajectory initialized at x
exits IC can be reduced to « by a control policy.

Proof: Note that CVaR,[Z7] <0 = P[Z] > 0] < «
[11, Sec. 6.2.4, pp. 257-258]. The event Z7 > 0 is equivalent
to the event that there is a state x of the associated trajectory
that exits /C since g(z) > 0 < x ¢ K. [ |
Thus, SO is a subset of the maximal probabilistic safe set at
the safety level « € (0, 1], if we consider non-hybrid systems
under history-dependent policies [6, Egs. 9 and 11].

A key difference between our risk-sensitive safe set (5)
and the risk-constrained safe set in [18] is that we specify the
CVaR of the worst constraint violation of the state trajectory
(o, ..., 2zN) to be below a required threshold, while ref. [18]
specifies the CVaR of the constraint violation of zj to be
below a required threshold for each k.

III. REDUCTION OF RISK-SENSITIVE SAFE SET
COMPUTATION TO CVAR-MDP

Computing risk-sensitive safe sets is challenging since the
computation involves a maximum of costs (versus a sum-
mation) and the Conditional Value-at-Risk measure (versus

the Expectation). Here we assert that computing an under-
approximation of a risk-sensitive safe set may be reduced to
solving a CVaR-MDP [15], [22]. Such a reduction will be
used in Section IV to devise a value-iteration algorithm to
compute tractable approximations of risk-sensitive safe sets.

A. Preliminaries

The reduction procedure is inspired by Chow et al. [15].
Specifically, we consider an augmented state space, X x ),
that consists of the original state space X and the space of
confidence levels ) := (0, 1]. Under-approximations of risk-
sensitive safe sets will be defined in terms of the dynamics
of the augmented state (z,y) € X x ).

Fix the initial condition (zg, yo) := (x, ). The augmented
state at time £+ 1 depends on the augmented state at time k,
(zk, yx ), as follows. Given a control uj € U and a sampled
disturbance wy € D, x4 € X satisfies the dynamics (2).
The next confidence level yi11 € V is given by

yk+1 - R.Lk,yk (wk) * Yk, (7)

where Ry, : D — (0,.-] is a known deterministic
function, which we will specify in Lemma 3. The augmented
state space X x ) is fully observable. Indeed, the history of
states and actions (z, ug,...,Tk—1,Ux—1,Zx) is available
at time k by (2). Also, the history of confidence levels
(Yo, - - -, yx) is available at time k since the functions R, .,
and the initial confidence level yy = a are known.

We define the set of deterministic, Markov control policies
in terms of the augmented state space as follows,

ﬁt = {(ﬂtaﬂt-ﬁ-lv"')ﬂ]\f—l) | Hi A XY — U}a

8
t=0,...,N—1. ®

The benefits of considering Il instead of II are two-fold.
First, the computational requirements are reduced when the
augmented state at time k is processed instead of the initial
confidence level and the state history up to time k. Second,
we are able to define an under-approximation of the risk-
sensitive safe set using Il as detailed below.

B. Under-Approximation of Risk-Sensitive Safe Set

Define the set U], at the confidence level o € (0,1] and
the risk level » € R as follows,

U ={xeXx|Jji(z,a) < pem™"}, 9)
where
Ji(z,a) := min CVaR,[Y]], Y] := Z,ZCVZO c(xg),
welly
(10)

such that ¢ : X — R is a stage cost, and the augmented state
trajectory (%o, Yo, ---,TN—1,YN—1,2ZN) satisfies (2) and (7)
with the initial condition (xo,yo) = (x, @) under the policy
7 € Tly. The next theorem, whose proof is provided in the
Appendix, states that if ¢ takes a particular form, then U
under-approximates the risk-sensitive safe set S.

Theorem 1 (Reduction to CVaR-MDP): Choose the stage
cost ¢(x) := Be™9@) where B > 0 and m > 0 are
constants, and g satisfies (4). Then, U, as defined in (9)



is a subset of S/, as defined in (5). Further, the gap between

U], and S, can be reduced by increasing m. ]
The parameter [ is included above to address numerical

issues that may arise if m is set to a very large number.

IV. NUMERICAL METHOD

By using Theorem 1, one can apply existing CVaR-MDP
algorithms to compute approximations of risk-sensitive safe
sets. Here we adapt a value-iteration algorithm from [15]
to compute tractable approximations of the risk-sensitive
safe set under-approximations {U}}. We start by stating
an existing result from operations research that will be
instrumental for devising the value-iteration algorithm.

A. Temporal Decomposition of Conditional Value-at-Risk

Here we present an existing result (using Lemma 22 in
[23]) that specifies how the Conditional Value-at-Risk of a
sum of costs can be partitioned over time, which motivates
the choice of the update function (7).

Lemma 3 (Temporal CVaR Decomposition): At time k,
suppose that system (2) is at state z;, € X with confidence
level yj, € ) and is subject to 7y, := (ug, Tr+1) € TI). Then,

CVaR,, [Z|zk, 1] = max C(R,Z;xk, yk, k),

RER(yx,P) (11a)

where
R(yesP) i= {1 D = (0, 3] [ Bupnr [R(wi)] =1},

N
Z = Zi:kJrl (i),
C(Rv Z7 Tky Yk, Wk) =
Euw,~p [R(w) - CVaRy, piw,) [Z]T kg1, Trgt]| ok, Mk}i)
(11b)
and c : X — R is a stage cost. Further, given the current state
(zk,yr), the current control uy := pug(x, yx), and the next

state x11, the function that was introduced in (7) ka% :

1 .
D — (0, ;-] is defined as

ka,yk (wg) := argmax C(R, Z; Tk, Yk, Tk)- (12)
RGR(yk,P)
Remark 1: The proof of Lemma 3 is a consequence of

Lemma 22 in [23], and its proof is omitted for brevity.

Remark 2: If we do not have access to wy, but only to
(Tk, Yk, Uk, Tk+1), then the next confidence level is defined
as Yr+1 := Ry, (w), where w € D is any disturbance that
satisfies 41 = f(Tk, ug, w).

B. Value-Iteration Algorithm

Using Lemma 3, we will devise a dynamic programming
value-iteration algorithm to compute an approximation Jy of
J¢, and thus, an approximation of I{], at different levels of
confidence « and risk r.

Specifically, compute the functions Jy_1, ..., Jo recur-
sively as follows: for all zj := (zx,yx) € X X Y,

Ji(zk)

= mj By, wp[Rpss (2, yiR)| 25, }
iréllr}{c(xk)—&—m%a);m k ]P[ ke (@ U )‘zk u]

fork=N-—-1,...,0,
(13)

where Jy(zn,yn) := c(zn), c(z) = ™I, 2! = xp g
satisfies (2), and R(yg,P) is defined in (11). R

Then, we approximate the set U as U] =
{r e X | Jo(z,a) < Be™7}, where we have replaced Jj
in (9) with Jy. The function, Jy, is obtained from the
last step of the value iteration (13). We present theoretical
arguments inspired by [15] and [4, Sec. 1.5] that justify such
an approximation in our extended version [24]. In particular,
theoretical evidence for the following conjecture is provided.

Conjecture (C): Assume that the functions Jy_1, ..., Joy
are computed recursively as per (13). Then, for any (z,«a) €
X x Y, Jo(z,a) = Ji(z,a), where J§ is given by (10).

This conjecture is also supported by the next example.

V. NUMERICAL EXAMPLE

Here we provide empirical results to demonstrate: 1) our
value-iteration estimate of Jy is close to a Monte Carlo
estimate of Jjj, 2) our value-iteration estimate of Z/lyr is an
under-approximation of a Monte Carlo estimate of S, and
3) estimating Jy (and Z:l\?j) via the value-iteration algorithm
is tractable on a realistic example. In our experiments, we
used MATLAB and MOSEK with CVX [25] on a standard
laptop (64-bit OS, 16GB RAM, Intel Core i7-4700MQ
CPU @ 2.40GHz). Our code is available at github.com/
chapmanmp/ACC_2019_Github.

We computed approximate risk-sensitive safe sets to eval-
uate the design of a retention pond in a stormwater catchment
system. We adopted an example from our prior work [26]
and assumed the following pond dynamics, zxy1 = ok +
%(wk — gp(zg,ug)) for k=0,...,N —1, where > 0 is
the water level (in feet), u € U := {0, 1} is the valve setting,
w € D :={dy,...,djo} is the random surface runoff rate,
gp is the outflow rate, and A is the pond surface area. We es-
timated a finite probability distribution for w using the design
storm from [26]. We set N := 48, K := [0, 5)ft, and g(x) :=
x—5. We computed over a grid of states and confidence lev-
els G := G x G, where G, :={0,0.1,...,6.4,6.5}ft and
G. = {0.999,0.95,0.80,0.65,0.5,0.35,0.20, 0.05,0.001}.
If 2,41 > 6.5ft, we set xp41 := 6.5ft to stay within the
grid. We were able to empirically assess the accuracy of our
proposed approach because an optimal policy is known a
priori for the one-pond system. In our setting, g1 > X
for all k, and the only way to exit K is if z; > 5ft. So, it
is optimal to keep the valve open over all time, regardless
of the current state, the current confidence level, or the state
history up to the current time. Please see [24], [26] for more
details on our example.

Our value-iteration estimate of Jy is shown in Fig. 1, and a
Monte Carlo estimate of J; is shown in Fig. 2. The estimates
of Jy and J are similar throughout the grid (except near
the Asmaller confidence levels). Our value-iteration estimate
of U, and a Monte Carlo estimate of S, are shown in Fig. 3
at various values of y and r. The empirical results indicate
that U, is an under-approximation of S;. We estimated each
S, using a Monte Carlo estimate of W (Fig. 4).

The computation time for our value-iteration estimate of
Jo was roughly 3h 6min. We deem this performance to



be acceptable because 1) computations to evaluate design
choices are performed off-line, 2) the problem entailed a
realistically sized grid (|G| - |G| = 594 grid points) and
time horizon (N = 48), and 3) our implementation is not
optimized. Please refer to [24] for additional implementation
details, including the interpolation methods [15].

Dyn. Programming (soft-max, m = 10)

Estimate of Jo(x,y)

Confidence level, y 0 o State, x

Fig. 1.  Our value-iteration estimate of Jog:c,a) versus (z, ) € G for

the pond system, see (13). c¢(z) := Be™9(*), 3 := 1073, m := 10, and
g(z) := & — 5. The computation time was roughly 3h 6min.

Monte Carlo (soft max, m = 10)

*

Estimate of Jo(x,y)

Confidence level, y 0 o

State, x

Fig. 2. A Monte Carlo estimate of Jj (z, «) versus (x,c) € G for the
pond system. c(z) := Be™ 9(&) 3 := 1073, m := 10, and g(z) := z—5.
100,000 samples were generated per grid point. See also Fig. 1.

VI. CONCLUSION

In this paper, we proposed the novel idea of a risk-sensitive
safe set to quantify safety of a stochastic dynamic system
over a spectrum of confidence levels. We showed how the
computation of a risk-sensitive safe set can be reduced to
the solution to a Markov Decision Process, where cost is
assessed according to the Conditional Value-at-Risk measure.
Further, we devised a tractable algorithm to approximate
risk-sensitive safe sets and provided empirical justification
for the algorithm. Theoretical justification is provided in [24].

Risk-sensitive safe sets may become powerful design tools
for safety-critical infrastructure systems by revealing trade-
offs between various design choices at different levels of
confidence. We illustrated our risk-sensitive reachability ap-
proach on a stormwater retention pond that must be designed

0 r=15 0 r=0.75
D Seeee080808s0e853508 > ] 088
r
j 0.5 90000000000000000000 j 0.8 9@@00000 ¢ xe Uy
g g o xes!
@ 0.650000000000000000000 D 0.6500€00000 y
§ 0.5 0000000000000009000 § 0.509€0000
(3] (3]
S 0.35000000000000000000 T 0.359000000
=4 =
8 0.2000000000000000000 8 0.2¢ec000
o 0HBr 8%
0 0.5 1 15 2 25 0 0.5 1 15 2 25
Water level, x (ft) Water level, x (ft)
r =125 r=05
999
0/8388888888888335° 1 0388383
2 0.8900000000000000 2 0.80000
¢ ¢
@ 0.65000000000000000 @ 0.65¢000
8 [
S 0.500000000000000 S 056000
(3} (3}
Z  0.3500000000000000 2 0.35000
s s
000000000
8 o0z2e § 0.2600
0hB788888388800 082
0 0.5 1 15 2 25 0 0.5 1 15 2 25
Water level, x (ft) Water level, x (ft)
0 r=1 0 r=0.25
733888888828553 783
i: 0.8900099000000 j 0.8
¢ ¢
k7 0.6590009900000 Q 0.65
Q Q
E 0.5 99008900000 % 0.5
Z  0.359000000000 Z 035
c =
§  0.29ee0@00000 § o2
0387838882 087
0 0.5 1 15 2 25 0 0.5 1 15 2 25

Water level, x (ft) Water level, x (ft)

Fig. 3. Approximations of {ZZ; } and {Sy} are shown for the pond system
at various levels of confidence y and risk r. In the legend, Z?; is denoted

by Uy, and S is denoted by Sj. Approximations of {LA{; } were obtained
from our value-iteration estimate of Jo (see Fig. 1). Approximations of
{8y} were obtained from a Monte Carlo estimate of W' (see Fig. 4).

to operate safely in the presence of uncertain rainfall. Our
results revealed that the current design of the pond is likely
undersized: even if the pond starts empty, there is a risk of
at least 0.25ft of overflow at most levels of confidence (see
Fig. 3, r = 0.25 plot at z = 0).

Future steps include: 1) prove the correctness of the value-
iteration algorithm, 2) devise approximate value-iteration
algorithms to improve scalability, and 3) consider a broader
class of risk measures. We are hopeful that with further de-
velopment, risk-sensitive reachability will become a valuable
tool for the design of safety-critical systems.
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APPENDIX

Proof: [Proof of Theorem 1] The proof relies on two
facts. The first fact is,

1

max{yi,...,yp} < —log(e™¥t 4 --- 4 ™¥r)
m

1 (14a)

ogp

< max{y,... e

Ypt +



Monte Carlo (max)

N

=
o

*

Estimate of Wo(x,y)
[N

4
Confidence level, y 0 o State, x
Fig. 4. A Monte Carlo estimate of W (x, «), as defined in (5), versus

(z, ) € G for the pond system. 100,000 samples were generated per grid
point, and g(z) := x — 5. The maximum is approximately 1.5ft because
the system state was prevented from exceeding 6.5ft.

for any y € RP, m > 0. (Use the log-sum-exp relation stated
in [27, Sec. 3.1.5].) So, as m — oo,

(14b)

1
— log(e™¥t + - 4+ €™¥?) = max{y1,...,yp}-
m

The second fact is that CVaR is a coherent risk measure, so it
satisfies certain properties. CVaR is positively homogeneous,
CVaR,[AZ] = ACVaR,[Z] for any A > 0, and monotonic,
CVaR,[Y] < CVaR,[Z] for any random variables ¥ <
Z [12, Sec. 2.2]. Also, CVaR can be expressed as the supre-
mum expectation over a particular set of probability density
functions [11, Egs. 6.40 and 6.70]. Using this property and
E[log(Z)] < log (E[Z]), one can show,

CVaR, [log(Z)] < log (CVaR,[Z]), (15)

for any random variable Z with finite expectation.
By monotonicity, positive homogeneity, (14), and (15),
CVaR, [Z]] < LCVaR, [log (Y]) |

Lo (CVaR,[77]), OO

A

where Y7 := Y" /3. Now, if = € U, then

em’ > Tqueul% CVaR,, [Y] /] = 1;11611111 CVaR, [Y] /5],

since IIj is included in II. By Lemma 1, there exists 7 € II
such that

r > Llog (CVaR, [Y]/B]) > CVaR, [Z7],
where the second inequality holds by (16). So, x € S/,. =
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