
A Model Predictive Control Approach to Flow Pacing for TCP

David Fridovich-Keil, Nathan Hanford, Margaret P. Chapman,
Claire J. Tomlin, Matthew K. Farrens, and Dipak Ghosal

Abstract—
A key challenge in the management of Internet traffic

is the design of algorithms that complement well-established
protocols, such as the Transmission Control Protocol (TCP),
and simultaneously address their limitations. The challenge
becomes greater in the context of large so-called “elephant”
flows over long paths that often transition from higher to
lower bandwidth connections. At these transition points either
persistent queues are formed when buffers are over-provisioned
or packet loss occurs when buffers are under-provisioned;
both cases lead to degraded and/or highly variable end-
to-end performance. Ideally, for such scenarios, the source
should “learn” and set a pacing rate that matches the lower
bandwidth connection. In this paper, we adopt a model-based
receding horizon control strategy to design a pacing control
method. Each new round-trip time (RTT) measurement is first
incorporated into a linear time-varying (LTV) predictive model.
Subsequently, we solve a one-step look-ahead optimization
problem which finds the pacing rate which optimally trades
off RTT, variance in RTT, and throughput according to the
most up-to-date model. We implemented our proof-of-concept
control strategy on the Linux operating system alongside the
existing CoDel queuing discipline (qdisc) and HTCP congestion-
control algorithm. Our preliminary results indicate significant
reduction in the variances of the RTT and the throughput,
resulting in more predictable performance overall.

I. INTRODUCTION

Long-distance data transfer in the presence of bandwidth
mismatches is relatively commonplace. Indeed, often the data
we download, e.g. streaming videos from an online content
provider, must first transfer from a high-speed backbone net-
work to a low-speed access network and then in some cases
transfer again to lower-speed home networks, much as cars
travelling on highways must eventually transition to smaller
roads. At locations where these bandwidth mismatches oc-
cur, either persistent queues – so-called bufferbloat [8] –
are formed when buffers are over-provisioned or packet
loss occurs when buffers are under-provisioned. Both cases
lead to degraded end-to-end performance. Currently, these
scenarios are addressed by various active queue manage-
ment (AQM) strategies [12]. One algorithm growing in
popularity is Controlled Delay Management (CoDel) [15].
CoDel ameliorates bufferbloat-induced delays with minimal

D. Fridovich-Keil, M. Chapman, and C. Tomlin are with the
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley. N. Hanford, M. Farrens, and D.
Ghosal are with the Department of Computer Science, University
of California, Davis. D. Fridovich-Keil is supported by the NSF
GRFP. This work is supported by NSF grant CNS 1528087.
{dfk,chapmanm,tomlin}@eecs.berkeley.edu,
{nhanford,mkfarrens,dghosal}@ucdavis.edu

impact on Internet link utilization by monitoring overall
delay and accordingly placing limits on the sending queue
size [16, 11]. For multiple flows, a well-designed scheduler
called fair queuing (FQ) ensures that CoDel drops packets
from flows with growing queues, which facilitates desirable
system performance and effective bufferbloat management
in many scenarios [11]. However, CoDel is not expected to
mitigate delays experienced by a single sustained TCP flow,
since the algorithm becomes too sensitive to the value of
the interval parameter, which specifies what it means for
packets to remain in queues for “too long” [16], and too
many packets may be dropped. Further, single-stream data
transfer from high bandwidth at the sender to low bandwidth
at the receiver under TCP-CoDel is challenging, particularly
in the context of large “elephant” flows over long distances.

For this bandwidth mismatch scenario, the ideal solution
would be for the sender to “learn and set” a maximum pacing
rate that matches the lowest bandwidth link in the end-to-end
path. If done properly, a single connection would not exceed
the capacity of the bottleneck bandwidth and, hopefully, have
predictable throughput and delay performance. If, however,
there are multiple flows sharing that bottleneck then the TCP
protocol along with a well-designed fair queuing strategy will
ensure that each flow receives an equal share of the capacity.

A key step in achieving predictable throughput and delay
– which is one of our key goals in this work – is flow
pacing. The idea behind flow pacing is that packets sent at
regular intervals rather than infrequent bursts will lead to
lower latency and higher throughput. As such, flow pacing
is also applicable in general highly utilized networks, much
as busy highways employ ramp metering. This is fundamen-
tally different from AQM strategies such as Random Early
Detection (RED) [7], BLUE [6], Controlled Delay (CoDel)
[16], and Proportional Integral controller Enhanced (PIE)
[17]. Broadly, AQM attempts to manage growing router
buffers (i.e. network latency) by cleverly dropping packets
from different flows to trigger loss-based congestion control
mechanisms in the TCP [10]. By contrast, flow pacing tries
to adjust the rate of data flow steadily in order to avoid
bufferbloat in the first place.

There is much prior work on flow pacing [1, 18, 9].
Broadly speaking, flow pacing can be performed at the source
host or at the edge where the access network connects to
the core network. The former is referred to as host pacing,
or more commonly TCP pacing, while the later is referred
to as edge pacing and can be performed by the internet
service provider (ISP) [9]. In this work we focus on TCP

pacing, which has been studied since the initial proposal [19].
More recent studies [1, 18, 9] have shown that host pacing
in most cases does improve TCP throughput, although it is
unclear if TCP paced flows receive their fair share of network
bandwidth when competing with non-paced TCP flows [18].

While the mechanism of flow pacing makes intuitive sense,
existing implementations in the Linux kernel, specifically in
the traffic control subsystem [13], do not incorporate on-
line validation of flow pacing’s key assumption. That is,
flow pacing implementations do not currently estimate their
effect on packet round trip time (RTT) over time. This paper
describes a preliminary attempt to incorporate such a model
into a predictive controller which sets the maximum pacing
rate to optimize flow control. Our results suggest that a
relatively simple linear model of RTT and a quadratic control
objective can effectively minimize RTT while keeping it very
steady over time. Although it is difficult to measure, we
hypothesize that maintaining such a low-variance RTT may
improve overall network throughput efficiency.

II. BACKGROUND

The sender-side functions that determine the rate at which
data is injected into the network are shown in Figure 1. The
rate at which data is written into the socket buffer depends on
the application. In this work we are concerned with elephant
flows and hence the rate at which data is injected into the
network is not application limited. TCP operates on the
socket send buffer and determines which and how much data
should be sent. ACKs from the receiver provide information
as to which data can be sent next. The amount of data to be
sent, i.e., the window size, is determined by TCP flow and
congestion control algorithms. To achieve end-to-end flow
control, the receiver informs the sender how much data it
can accept. This receiver advertised window size is sent with
the ACKs. The congestion control algorithm determines the
congestion window based on the estimate of the network
congestion; the precise manner in which this is determined

Network Interface Card (NIC)

ACK Processing and Loss Detection (What to send)
RTT Samples, Set Timeout
Determine window size (How much to send)

TCP Segment Offload (TSO) (Determine burst size)
Transmit Small Queues (TSQ) (How much to enqueue)
Queuing Discipline (Qdisc) and FQ Scheduler (Determine sharing)
Pacing Rate (How fast to send)

Socket Send Buffer

TCP Congestion
Control

TCP Flow
Control

Model Predictive
Pacing Algorithm

Local Flow Control
using TSQ

Application
User Space

Kernel Space

ACKsSegment

Packets

Segment

ACKs

Interface to physical network

Data

Fig. 1: Sender-side functions that determine the rate at which
data is injected into the network (adapted from [5]).

depends upon the particular congestion control algorithm in
use [10]. The amount of data that is sent is the minimum of
the window sizes determined by the TCP flow control and
the congestion control algorithms.

The data which TCP decides to send out is first passed
through lower level protocol processing and then through
the network interface. These processes are controlled by
a number of functions that determine how much data is
eventually injected into the network [5].

1) TCP Segmentation Offload (TSO): While the physi-
cal network has a Maximum Transmission Unit (MTU)
size, having the TCP layer handoff MTU-sized seg-
ments to the lower layer results in very poor CPU
efficiency. TSO allows TCP to hand off large segments
(up to 64 KB) to the lower layer which segments the
large chunks into MTU size packets. While segmenting
into larger chunks expends fewer CPU cycles, smaller
chunks allow for smaller bursts to be transmitted into
the network. This leads to lower network queue sizes
which in turn reduces queuing delays and packet loss
rates.

2) TCP Small Queue (TSQ): TSQ performs local flow
control between the network layer queue and the TCP
layer. TSQ limits the amount of data in the queues
on the sending host by controlling when TCP can
handoff segments to the network layer. Similar to TSO,
there is a tradeoff; keeping the queues small reduces
latency and head-of-line blocking while keeping the
queues large ensures flow pressure to keep the link
fully utilized.

3) Queuing Discipline (Qdisc) and FQ Packet Sched-
uler: A qdisc is a packet scheduler which determines
how to queue outgoing packets. It contains functions
to filter and classify packets and methods to handle
matched packets, i.e. packets with the same flow
descriptor. Additionally, the scheduler implements a
Fair Queue (FQ) mechanism which attempts to provide
fair bandwidth sharing between flows. It does this by
performing round-robin packet scheduling over a red-
black tree which stores the queue state for each flow.
Upon each visit to a queue, that queue is given a time
quantum in which to dequeue packets.

4) Pacing: The goal of pacing is to spread out the
transmission of chunks of data (determined by TSO),
rather than immediately bursting them onto the line.
Pacing also makes rate limiting possible. In the case
of CoDel, pacing is done efficiently by setting limits
on the queue size.

As shown in Figure 1 this work focuses on the pacing
algorithm. In Linux, pacing is performed by a nanosecond-
granularity timer that schedules packets for transmission. The
overall sending rate is determined by the TCP congestion
control algorithm. Most established TCP protocols [10] rely
on a loss-based congestion control algorithm to determine
the sending rate. Such strategies keep bottleneck queues full,
leading to poor network latency. Recently, BBR TCP [4] has

demonstrated the effectiveness of latency-based congestion
control. BBR works by quickly acquiring both the bottleneck
bandwidth and the nominal RTT, pacing data so that the
amount in-flight matches the bottleneck bandwidth-delay
product (which keeps queues small), and periodically probing
the bottleneck bandwidth to adjust for competing flows or
changes in network topology. TCP Vegas [3] also uses RTT
as the control input. In TCP Vegas, the RTT is carefully
monitored. If there is a packet drop or increase in RTT, the
sending rate is decreased whereas if the RTT is steady, the
sending rate is increased until either a packet drop occurs or
RTT increase is observed. TCP Vegas suffers from fairness
issues when competing with purely loss-based congestion
control.

In this work we propose a different approach to latency-
based congestion control. In particular, our controller sets
the maximum pacing rate by solving a model-based receding
horizon control problem at each time step. Each new round-
trip time (RTT) measurement is first incorporated into a
linear time-varying (LTV) predictive model. Subsequently,
we solve a one-step look-ahead optimization problem which
finds the pacing rate which optimally trades off RTT, RTT
variance, and throughput according to the most recent model.
Our method is computationally inexpensive making it readily
implementable on current systems.

III. MODEL PREDICTIVE PACING ALGORITHM

We take a model-based receding horizon control approach
to flow pacing. Each new RTT measurement is first incorpo-
rated into a LTV predictive model of RTT at the next time
step. Then, we solve a quadratic optimization problem which
finds the pacing rate that optimally trades off predicted RTT,
predicted RTT variance, and throughput according to the new
model. Section III-A presents the LTV model, and Sec. III-B
describes the corresponding model predictive control (MPC)
problem.

A. Predictive Model

We estimate RTT at time step n, ˆ̀(n), as a linear function
of its immediate past history and that of the max pacing rate
r, i.e.

ˆ̀(n) =

p∑
i=1

ai`(n− i) +
q∑
i=1

bir(n− i) (1)

The constants p and q govern how far back in time `(n)
is allowed to depend on the past. Since the behavior of RTT
may change over time, e.g. as flows leave or join the route or
as the route itself changes, we allow the {ai}, {bi} to change
as well. In particular, we adjust their values using stochastic
gradient descent according to the following update rule after
receiving each new RTT `(n).ai ←− ai − α

(
ˆ̀(n)− `(n)

)
`(n− i)

bi ←− bi − α
(
ˆ̀(n)− `(n)

)
r(n− i)

(2)

These updates correspond to minimizing the objective
function 1

2 (
ˆ̀(n) − `(n))2 by taking a gradient step scaled

by α. We find that setting α = 0.5 works well in prac-
tice, although the convergence of such approximate gradient
methods is only guaranteed in theory for some range of
α which depends upon the noise characteristics of the
time series `(n) and r(n). Unfortunately these statistics are
unknown a priori and moreover there is no guarantee of
properties such as stationarity which are typically assumed.

B. Model Predictive Control Strategy

Given this model, we formulate the following optimization
problem to choose the pacing rate at the n-th time step r(n)
which minimizes both the predicted RTT and its variance at
the next time step while maximizing pacing rate,1 according
to trade-off parameters ψ, ξ > 0:

r(n) = argmin
0≤r≤R

ˆ̀(n+ 1)

µ`(n)
+ ψ

Var(ˆ̀(n+ 1))

µv(n)
− ξ r

µr(n− 1)
(3)

Note that we have divided each term in the objective
function by an exponentially-weighted moving estimate of
its mean, i.e.

µ`(n) = γµ`(n− 1) + (1− γ)`(n)
µv(n) = γµv(n− 1) + (1− γ)Var(ˆ̀(n))
µr(n) = γµr(n− 1) + (1− γ)r(n)

(4)

The parameter γ controls the time-scale of the moving
average. In practice, we set it to 0.5, which means that
the mean estimators µ are heavily weighted toward recent
measurements. This setting allows for rapid adjustment to
changes in dynamics; in some settings however it may be
more appropriate to set this somewhat higher in order to be
less sensitive to rapid changes in RTT.

Dividing by the mean effectively normalizes the scale of
ψ and ξ so that the solution to Eq. 3 remains meaningful for
links with dramatically different nominal latencies, latency
variability, and bottleneck bandwidth. Practically speaking,
the effect is to place all three terms on the same relative scale
so that, for example, a 10% increase in latency is offset by
a 10% decrease in variance (assuming ψ = 1 for clarity).
The normalization is delayed by one time step in order to
decouple it clearly from the choice of r(n), upon which ˆ̀(n+
1) depends. We expand ˆ̀(n+1) as a function of r as follows:

ˆ̀(n+ 1) = b1r +

p−1∑
i=0

ai+1`(n− i) +
q−1∑
i=1

bi+1r(n− i) (5)

and we approximate the variance of predicted RTT with the
squared deviation from the (exponential) average, i.e.

Var(ˆ̀(n+ 1)) ≈ (ˆ̀(n+ 1)− µ`(n))2 (6)

With this approximation in mind, we may solve for r(n)
in closed form by minimizing the objective function in Eq.

1Ideally, we would like to maximize throughput, not pacing rate. However,
as we are unable to measure throughput directly in real-time, we use pacing
rate as a proxy. The quality of this proxy is validated in Figs. 2b and 3b
where control rate closely matches throughput measured post hoc.

Algorithm 1 MPC Flow Pacing

1: initialize µ`, µv, µr
2: initialize {ai}, {bi}
3: while `←− NewPacketRTT() do
4: update {ai}, {bi} . Eq. 2
5: update µ`, µv . Eq. 4
6: compute optimal r . Eq. 7
7: update µr . Eq. 4
8: if time since last pacing rate change > T ms then
9: set max pacing rate to optimal r

10: end if
11: end while

3. The result is given by

r(n) =

(
ξ

µr(n−1) −
b1

µ`(n)

)
µv(n)
2ψb1

+ µ`(n)−
[
ˆ̀(n+ 1)

]
r(n)=0

b1
(7)

where
[
ˆ̀(n+ 1)

]
r(n)=0

denotes the predicted latency at time

step n+ 1 if the controller were to set r(n) to zero, i.e.[
ˆ̀(n+ 1)

]
r(n)=0

=

p−1∑
i=0

ai+1`(n− i) +
q−1∑
i=1

bi+1r(n− i)

(8)

The steps above are summarized in Alg. 1. In brief, upon
receipt of a new packet we record its RTT, update the
{ai}, {bi} as in Eq. 2, and update µ`(n) and µv(n) as in
Eq. 4. Then, we compute r(n) from Eq. 7, update µr(n),
and set the max pacing rate accordingly. We allow the max
pacing rate to be changed only every T = 10 ms, so if that
amount of time has not yet elapsed, we leave the max pacing
rate unchanged.

C. Validation

Other popular models such as the fluid-based model of
Misra, Gong, and Towsley [14] are non-linear ordinary dif-
ferential equations, yet our model is linear. The justification
for this simplification is subtle, but the key point is that in
order to make the next control decision a model only needs to
be accurate near the current operating point and for a short
time horizon. More precisely, if we are only changing the
pacing rate by a small amount at every time step, a linear
approximation to the full dynamics suffices to predict the
effect on RTT. Moreover, as the operating point changes our
model adaptively learns a linear approximation to the new
dynamics.

Additionally, as we use stochastic gradient descent to
update model parameters in Eq. 2, the model represented
by the {ai}, {bi} may take several iterations to converge. As
a general rule, more complicated models may take even more
iterations to converge than our relatively simple linear model.
Thus, our choice of a linear model is intended to facilitate
model convergence and rapid adaptation to new dynamics
about a changing operating point.

Figure 2a demonstrates the effectiveness of this modeling
approach for a testing configuration with bottleneck capacity
of 10 Gbps (see Sec. IV-A for details). The model’s predicted
latency closely tracks the actual measured latency through its
characteristic saw-tooth pattern despite high-frequency noise.
We present further results in Sec. IV.

IV. RESULTS

A. Experimental Setup

Our experimental setup simulates an increasingly prevalent
cluster computing or networked high performance computing
scenario where results of a computational task must be sent
first over a very high-speed Local Area Network (LAN), and
then over a high-speed Wide-Area Network (WAN). We used
two Dell T630 servers running Ubuntu Linux 16.04. The
sending system was connected to the intermediate system
with a 40 Gbps local link. The intermediate system was
then connected to a 10 Gbps WAN link. The sending system
would send data as quickly as possible to different remote
hosts through the intermediate system.

The Linux network stack provides several user-space utili-
ties for influencing flow behavior. In particular, the Linux ad-
vanced routing and traffic control (LARTC) facility provides
tc, an advanced traffic control subsystem which mimics
some of the functionality of high-performance routers. tc al-
lows for the implementation of queuing disciplines (qdiscs),
which control the behavior of flows as they leave a system.
Controlled Delay (CoDel) is an egress queue management
system which puts hard limits on the real queue size in order
to minimize RTT. In our case we used the CoDel’s hard limits
on the real size of egress queues in order to limit throughput
quickly and with low overhead. In this manner, our control
is implemented “on top of” CoDel. This qdisc was used on
both the sending system and the intermediate node.

TABLE I: Summary of the Systems Under Test

System Dell T630
Processor Dual Intel E5-2637v3
40G NIC Mellanox ConnectX-3
10G NIC Intel 82599ES
Operating System Ubuntu Linux 16.04
Kernel 4.4.0-83-generic x86 64
Queuing Discipline FQ CoDel
TCP Congestion Control HTCP and Reno

B. Single Flow Over Paths with Capacity Mismatch

We begin by demonstrating the efficacy of our control
strategy for a single bulk flow on the experimental setup
described in Sec. IV-A. Figure 2 shows RTT over time for
such a flow from UC Davis to a test host in Sacramento both
with and without control. Our controller completely elimi-
nates the saw-tooth pattern in RTT which is characteristic
of loss-based congestion control, and quickly converges to
a pacing rate of just slightly less than the true bottleneck
bandwidth of 10 Gbps.

Figure 3 shows the corresponding throughput for the same
flows. As before, the controller effectively eliminates the

(a) Uncontrolled RTT for a bulk flow from UC Davis to Sacramento.

(b) Controlled RTT and controller output over time for a bulk flow
from UC Davis to Sacramento.

Fig. 2: Our controller (2b) successfully eliminates the char-
acteristic saw-tooth pattern in RTT in (2a). Note that our
controller immediately converges upon a pacing rate of just
slightly less than the true bottleneck capacity of 10 Gbps.

saw-tooth pattern in the uncontrolled throughput. The slight
downward slope in control rate in Fig. 2b and throughput in
Fig. 3b is likely an indication that the ξ parameter could be
increased, which would make the controller value throughput
more highly.

C. Single Flow with Transient Congestion

Figure 4 shows how our controller reacts to transient
congestion artificially induced by periodically changing the
bottleneck capacity between 10 and 5 Gbps. Despite these
sudden changes in capacity, our model is effectively able
to disambiguate the effect of control rate on RTT and
stabilize throughput at a level just under the lower of the
two capacities (5 Gbps). Although such performance does
not take full advantage of the available capacity while
the capacity is 10 Gbps, that was not our goal. In this

(a) Uncontrolled throughput for the flow shown in Fig. 2a.

(b) Controlled throughput for the flow shown in Fig. 2b.

Fig. 3: Our controller (3b) successfully eliminates the char-
acteristic saw-tooth pattern in throughput in (3a).

work, we are more concerned with maintaining a steady,
predictable, low RTT and hence more consistent behavior of
communication-intensive applications. Future work may be
devoted to optimizing performance for throughput.

D. Fairness

An important concern for any novel TCP control algorithm
is the notion of fairness. That is, a flow using a new controller
should ideally consume the same share of network bandwidth
as any other competing flows, regardless of what congestion
control algorithm they are using.

Figure 5 shows how our controller reacts to a competing
flow running HTCP, a particularly aggressive congestion
control algorithm which builds its window quickly. The
controller quickly claims its fair share (half) of the available
10 Gbps bottleneck capacity, then stabilizes around 4 Gbps.
Although this is slightly less than the fair share, the controller
is able to maintain a stable RTT throughout, which was our
design objective.

(a) Uncontrolled throughput in the presence of transient congestion.

(b) Controlled throughput in the presence of transient congestion.

Fig. 4: Our controller (4b) successfully eliminates the large
fluctuations in throughput in (4a) caused by transient router
congestion.

E. Comparison with BBR TCP

As explained in Sec. II, our work is similar in spirit to
BBR TCP [4], the major difference being our use of a simple,
explicit learned model of RTT dynamics and corresponding
optimal control law. Since BBR has only recently been
released in beta form on the Linux kernel, we have not had
the chance to make a direct empirical comparison between
our work and BBR. We are excited to pursue this direction
in the future.

Based on the description of BBR and results presented in
Cardwell et al. [4], the major qualitative difference between
our approach and BBR lies in how each acquires the nominal
RTT. BBR periodically probes the network by increasing
the pacing rate (see Fig. 5 in [4]), whereas our controller
balances the benefit of increasing pacing rate against pre-
dicted changes in RTT and RTT variability according to a
predefined cost function. This leads to periodic increases in

Fig. 5: Performance in the presence of a competing flow
running HTCP.

RTT for flows using BBR TCP, and more steady RTT for
flows using our controller (e.g. Fig. 2b).

F. Impact of Parameter Setting

Here, we review the key parameters of our algorithm
and explain the theoretical and empirical effect of each.
Parameters are grouped by whether they pertain to the model
or to the controller.

1) Model Parameters: Our model from Eq. 1 contains
two user-specified parameters: p and q, which represent the
number of past samples of RTT ` and control output r,
respectively, with which to predict the next RTT. Increasing
p and q give the model a longer memory, which may be
important on systems with particularly long nominal RTTs.
In practice, we set p = 5 and q = 1.

Additionally, the model update procedure from Eq. 2 con-
tains a step size parameter α, which controls the convergence
rate and volatility of the model. Increasing α may lead to
faster model convergence, though at the expense of volatility
due to the amplification of noisy RTT measurements. In
practice, we set α = 0.5.

2) Controller Parameters: The control procedure from
Eq. 3 depends upon two key parameters, ψ and ξ, which
control the importance of RTT variance and control output
relative to predicted RTT, respectively. Setting both to unity
implies that the controller should treat, for example, a 10%
increase in normalized predicted RTT as equivalent to a 10%
decrease in normalized RTT variance or a 10% increase in
normalized control. In practice, we set ψ = 1 and ξ = 100.

The exponential moving averages of each of these three
quantities, given in Eq. 4, depend upon a single parameter
γ ∈ (0, 1) which controls the memory of the moving
average. Higher γ indicates a longer memory, meaning that
the average is significantly impacted by measurements from
the distant past. In practice, we set γ = 0.5.

V. CONCLUSIONS

In this paper we have described a novel approach to
controlling RTT for modern high intensity internet appli-
cations. Our work differs from the state of the art in
several regards, but mainly in its explicit incorporation of
an adaptively-learned predictive model of RTT and receding
horizon control scheme rather than on techniques from linear
control theory [2] or on repeated probing of bottleneck
bandwidth [4]. Our method is able to stabilize RTT and
throughput under a variety of conditions, and qualitative
analysis suggests a favorable comparison to the current state
of the art.

Future work will examine the quantitative differences in
behavior between techniques such as BBR and our method.
We are also interested in designing an auto-tuning scheme for
model and control parameters, and optimizing our algorithm
more aggressively for high throughput. Eventually, we hope
to release a qdisc for the Linux kernel.

REFERENCES

[1] Amit Aggarwal, Stefan Savage, and Thomas Anderson. “Un-
derstanding the performance of TCP pacing”. In: INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE.
Vol. 3. IEEE. 2000, pp. 1157–1165.

[2] Takehito Azuma, Tsunetoshi Fujita, and Masayuki Fujita.
“Congestion control for TCP/AQM networks using state pre-
dictive control”. In: Electrical Engineering in Japan 156.3
(2006), pp. 41–47.

[3] Lawrence S. Brakmo and Larry L. Peterson. “TCP Vegas:
End to end congestion avoidance on a global Internet”. In:
IEEE Journal on selected Areas in communications 13.8
(1995), pp. 1465–1480.

[4] Neal Cardwell et al. “BBR: Congestion-Based Congestion
Control”. In: Queue 14.5 (Oct. 2016), 50:20–50:53. ISSN:
1542-7730. DOI: 10.1145/3012426.3022184. URL:
http : / / doi . acm . org / 10 . 1145 / 3012426 .
3022184.

[5] Yuchung Cheng and Neal Cardwell. “Making Linux TCP
Fast”. In: The Technical Conference on Linux Networking
(NETDEV 1.2), pp. 73–80.

[6] Wu-chang Feng et al. “The BLUE active queue management
algorithms”. In: IEEE/ACM Transactions on Networking
10.4 (Aug. 2002), pp. 513–528. ISSN: 1063-6692. DOI: 10.
1109/TNET.2002.801399.

[7] S. Floyd and V. Jacobson. “Random early detection gateways
for congestion avoidance”. In: IEEE/ACM Transactions on
Networking 1.4 (Aug. 1993), pp. 397–413. ISSN: 1063-6692.
DOI: 10.1109/90.251892.

[8] Jim Gettys and Kathleen Nichols. “Bufferbloat: Dark buffers
in the Internet”. In: Communications of the ACM 55.1
(2012), pp. 57–65.

[9] Hassan Habibi Gharakheili, Arun Vishwanath, and Vijay
Sivaraman. “Comparing edge and host traffic pacing in
small buffer networks”. In: Computer Networks 77 (2015),
pp. 103–116. ISSN: 1389-1286. DOI: http://dx.doi.
org / 10 . 1016 / j . comnet . 2014 . 11 . 021. URL:
http : / / www . sciencedirect . com / science /
article/pii/S1389128614004393.

[10] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: a new
TCP-friendly high-speed TCP variant”. In: ACM SIGOPS
Operating Systems Review 42.5 (2008), pp. 64–74.

[11] T Hoeiland-Joergensen et al. The FlowQueue-CoDel Packet
Scheduler and Active Queue Management Algorithm. draft-
ietf-fq-codel-06 (work in progress). Mar. 2016.

[12] C. V. Hollot et al. “Analysis and Design of Controllers for
AQM Routers Supporting TCP Flows”. In: IEEE Transac-
tions on Automatic Control 47.6 (2002), pp. 945–959.

[13] Bert Hubert et al. Linux Advanced Routing & Traffic Control
HOWTO. Tech. rep. 2002.

[14] Vishal Misra, Wei-Bo Gong, and Don Towsley. “Fluid-based
Analysis of a Network of AQM Routers Supporting TCP
Flows with an Application to RED”. In: ACM SIGCOMM
Computer Communication Review. Vol. 30. 4. ACM. 2000,
pp. 151–160.

[15] Kathleen Nichols and Van Jacobson. “Controlling Queue De-
lay”. In: Communications of the ACM 55.7 (2012), pp. 42–
50.

[16] K Nichols et al. Controlled Delay Active Queue Manage-
ment. draft-ietf-aqm-codel-04 (work in progress). June 2016.

[17] Rong Pan et al. “PIE: A lightweight control scheme to
address the bufferbloat problem”. In: High Performance
Switching and Routing (HPSR), 2013 IEEE 14th Interna-
tional Conference on. IEEE. 2013, pp. 148–155.

[18] D Wei et al. “TCP pacing revisited”. In: Proceedings of IEEE
INFOCOM. 2006.

[19] Lixia Zhang, Scott Shenker, and Daivd D Clark. “Observa-
tions on the dynamics of a congestion control algorithm: The
effects of two-way traffic”. In: ACM SIGCOMM Computer

Communication Review 21.4 (1991), pp. 133–147.

http://dx.doi.org/10.1145/3012426.3022184
http://doi.acm.org/10.1145/3012426.3022184
http://doi.acm.org/10.1145/3012426.3022184
http://dx.doi.org/10.1109/TNET.2002.801399
http://dx.doi.org/10.1109/TNET.2002.801399
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.11.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.11.021
http://www.sciencedirect.com/science/article/pii/S1389128614004393
http://www.sciencedirect.com/science/article/pii/S1389128614004393

	Introduction
	Background
	Model Predictive Pacing Algorithm
	Predictive Model
	Model Predictive Control Strategy
	Validation

	Results
	Experimental Setup
	Single Flow Over Paths with Capacity Mismatch
	Single Flow with Transient Congestion
	Fairness
	Comparison with BBR TCP
	Impact of Parameter Setting
	Model Parameters
	Controller Parameters

	Conclusions

