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What is risk?

• There are different definitions for risk, which may be interpreted qualitatively or 

quantitatively based on application-specific needs.

• Risk is the “possibility of loss or injury” (Merriam-Webster).

• Risk is an entity that “creates or suggests a hazard” (Merriam-Webster).

• Risk is “the effect of uncertainty on objectives” (International Organization for Standardization).
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The purpose of this talk is to examine and present the core connections between 

the analysis of risk and the control of semi-autonomous systems.
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Talk Outline

1. Present the two mainstream paradigms for managing systems under uncertainty

2. Motivate the risk-averse paradigm

3. Present three concepts that are helpful for quantifying risk

4. Present risk functionals & optimal control problems

5. Discuss adaptability and scalability challenges

6. Propose future directions
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There are two mainstream paradigms for quantifying & managing 

the potential consequences of a system’s behaviour.

Robust Paradigm (worst-case) Stochastic Paradigm (risk-neutral)

nonstochastic bounded adversarial inputs

assuming the “worst” circumstances

random variables (may be adversarial)

in probability or on average

Bertsekas & Rhodes 1971, Heger 1994, 

Coraluppi & Marcus 1999, Mitchell+ 2005, 

Margellos & Lygeros 2011, Chen & Tomlin 

2018, Huang+ 2019, Ivanov+ 2020,…

Geibel 2001, Geibel & Wysotzki 2005, Abate+ 

2008, Summers & Lygeros 2010, Forejt+ 2011, 

García & Fernández 2012, Moldovan & Abbeel 

2012, Ding+ 2013, Schildbach+ 2014, Yang 

2020,…

Includes literature from the machine learning, robust control, stochastic control, and formal verification communities.

More literature can be found in Wang & Chapman 2022.

Quantifies safety or 

performance…

Disturbances are 

modelled as…
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An issue with assessing safety or performance on average alone is that distributions with 

diverse characteristics can have the same expectation, e.g., 

If the outcomes represent potential costs incurred by a system, 

we may prefer some of these distributions over others.

Courtesy of Kevin Smith
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Motivation for Risk-Averse Systems Theory

• The expectation is not designed to assess rare harmful outcomes. 

• Assuming bounded disturbances excludes common noise models.

• Systems often require an awareness of rare harmful outcomes without being too cautious.

• Broad applications: civil & environmental infrastructure under weather uncertainty, population 

growth, medical applications under patient-to-patient variability, human-robot interaction,…

Figure credit: Wang & Chapman 2022
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What does risk-averse mean?

• Colloquially, risk-averse describes people or algorithms that prefer outcomes with reduced 

uncertainty.

• We will propose a definition that emphasizes systems.
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We propose a definition for risk-averse that emphasizes systems. 

• To quantify risk means to summarize (numerically) the potential consequences of the system’s 

behaviour.

• For a given system, we assume that there is a random variable 𝑍, whose realizations 

describe the consequences that may arise from the system’s behaviour. 

• Risk-averse describes people or algorithms that prefer distributions for 𝑍 with specific 

characteristics, where the characteristics reflect a desire to reduce harm. 
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Three concepts that are helpful for quantifying the risk of a system:

1. Probabilities of harmful events

2. Temporal logic (TL) specifications 

3. Risk functionals of random variables

Temporal logic (TL) is a mathematical language for describing relationships between different events in time. 

TL specifications can be deterministic or probabilistic.

Risk functionals and risk measures are synonyms. 
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Example: A Network of Autonomous and Human Drivers

• Zt : distance between an autonomous car and a human-driven car at time t (larger realizations are preferred)

• z : smallest “allowable” distance

1. Probability of a harmful event: probability that Zt ≤ z for some time t (i.e., probability of a collision)

2. Temporal logic (TL) specification: Zt ≥ z for every time t with probability 1

3. Risk functional of a random variable: average value of Zt + (Zt – [desired distance])2

Figure credit: Wang & Chapman 2022



14

Example: A Cancer Cell Population

Figure credit: Wang & Chapman 2022

• Z : [# healthy cells]/[desired # healthy cells] at the end of a treatment cycle (larger realizations are preferred)

• z : smallest “allowable” value of the ratio, estimated from a doctor’s expertise

• A distribution for Z can be estimated using a dynamical model with varying parameter estimates.

1. Probability of a harmful event: probability that Z ≤ z (e.g., treatment is too toxic, drug resistance develops,…)

2. TL specification: For every cycle after the 5th cycle, Z ≥ 1 with probability 0.9.

3. Risk functional of a random variable: average value of Z in the 1% worst cases

TL = temporal logic
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Example: A Hydroelectric Dam

• Z : volume of water that discharges into the emergency spillway due to a storm (smaller realizations are preferred)

• z : “allowable” discharge volume based on local regulations

• A distribution for Z can be estimated using a model for the dam and historical precipitation data.

1. Probability of a harmful event: probability that Z ≥ z (i.e., probability of an overflow)

2. TL specification: Until the third storm of the current month, the probability that Z ≥ z is less than 0.05.

3. Risk functional of a random variable: average value of max{Z – z, 0}

Generator

Figure credit: Wang & Chapman 2022
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Talk Outline

1. Present the two mainstream paradigms for managing systems under uncertainty

2. Motivate the risk-averse paradigm

3. Present three concepts that are helpful for quantifying risk

4. Present risk functionals & optimal control problems:

a. Examples of risk functionals & standard form of a risk-averse optimal control problem

b. Pros/cons of exponential utility optimal control

c. Two additional methods

5. Discuss adaptability and scalability challenges

6. Propose future directions
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We will focus on risk functionals.

A risk functional 𝜌 is a map from ℤ, a space of random variables, to ℝ ∪ {+∞}.

𝜌: ℤ ⟶ ℝ ∪ {+∞}

• Typically, one selects ℤ to be an 𝐿𝑝-space with 𝑝 ∈ [1, +∞] chosen so that 𝜌 𝑍 ∈ ℝ for every 𝑍 ∈ ℤ.

• The term risk functional emphasizes that the domain of 𝜌 is a space of functions.

We assume that smaller realizations of 𝑍 ∈ ℤ are preferred.

Shapiro, Dentcheva, and Ruszczyński 2009
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Risk functionals can quantify heavy-tailed distributions or 

higher-order moments of random variables.

Different ways to 

quantify “dispersion” 

from the mean

Assumptions: Z has a density; α is sufficiently small so that E(Z) + variance(Z) < VaRα(Z). 

Value-at-Risk

Density of a 

random 

variable Z

Conditional Value-at-Risk
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Additional Common Risk Functionals

• One must choose the domain ℤ appropriately so that 𝜌 is well-defined.

• Compositional risk functionals are also called nested or recursive risk functionals; we 

show 4 stages for simplicity, but more stages can be chosen.

Expected Utility:

Compositional: 𝜌 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4 ≔ 𝜌1 𝑍1 + 𝜌2 𝑍2 + 𝜌3 𝑍3 + 𝜌4 𝑍4

𝜌 𝑍 ≔ ℎ−1 𝐸 ℎ 𝑍

ℎ is a (sufficiently regular) utility function 

𝜌 𝑍 ≔ 𝐸 ℎ 𝑍
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Standard Form of a Risk-Averse Optimal Control Problem

Subject to: System dynamics,

𝜌𝑖
𝜋 𝑍𝑖 ∈ 𝐾𝑖, 𝑖 ∈ ℐ.

Explicit equations may not 

be available.

Risk-averse constraints

• 𝜌𝜋, 𝜌𝑖
𝜋: risk functionals

• 𝑍, 𝑍𝑖: random variables whose distributions depend on 𝜋 (and typically also an initial state)

inf
𝜋∈Π

𝜌𝜋 𝑍
Risk-averse objective

Π: particular policy class

Most research concerns exponential utility…
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• Howard & Matheson 1972: finite state spaces

• Jacobson 1973: Euclidean spaces, linear systems, quadratic costs, Gaussian noise (“LEQG”)

• Whittle+ 1980-1990s: LEQG with partially observable states

• Glover & Doyle 1988: Analyzed relations between controllers satisfying an ℋ∞-norm bound & the infinite-

time LEQG controller

• di Masi & Stettner 1999: Borel spaces, nonlinear systems, infinite time

• Bäuerle & Rieder 2014: Borel spaces, nonlinear systems, expected utility, studied exponential utility as a 

special case

• Saldi, Başar, Raginsky 2020: exponential utility & mean-field games

• Chapman & Smith 2021: Borel spaces, nonlinear systems, finite time, optimality from first principles

Exponential Utility −2

𝜃
log 𝐸 exp

−𝜃

2
𝑍 with 𝜃 ≠ 0 is viewed as a mean-variance approximation. 

Risk Functionals & Systems (not exhaustive)

Linear Exponential Quadratic Gaussian

More literature can be found in Wang & Chapman 2022.
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Classical Example: Finite-Time Exponential Utility Optimal Control

Subject to: 𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡),

inf
𝜋∈Π

−2
𝜃
log 𝐸𝑥

𝜋 exp −𝜃
2
𝑍

Under appropriate conditions (e.g., θ is “near” zero and others…),

−2

𝜃
log 𝐸𝑥

𝜋 exp −𝜃

2
𝑍 ≈ 𝐸𝑥

𝜋 𝑍 − 𝜃

4
V𝑥
𝜋 𝑍 .

variance

𝑤𝑡 ~ 𝑝𝑡 ⋅ 𝑥𝑡 , 𝑢𝑡 ,𝑢𝑡∈ 𝐶,

Class of deterministic 

Markov policies

Dynamics 

function

Action

space
Disturbance 

distribution

Cumulative cost, 

whose distribution 

depends on (𝜋, 𝑥)

where the disturbances are conditionally independent. 

Risk-aversion parameter (𝜃 < 0)

Initial 

state
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Challenges:

• Can we consistently produce a mean-variance tradeoff by making 𝜃 more negative? 

• Can we provide a precise quantitative interpretation of Exponential Utility and its parameter 𝜃?

Pros & Cons of Exponential Utility Optimal Control

Pros:

• Admits a dynamic program on the state space

• Represents a user’s subjective preferences (utility model)

• Provides a mean-variance approximation under appropriate conditions
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We will provide a simple example to illustrate how different values 

of 𝜃 can affect the “optimal” distribution of 𝑍.

• A realization of 𝑍 takes the form σ𝑡=0
𝑁 𝑐(𝑥𝑡).

𝑡 = 0,1, … , 𝑁 − 1.

• We consider a thermostatic regulator:

Model adopted from Yang 2018, originally from Mortensen & Haggerty 1988;

Smith & Chapman, under review

𝑥𝑡+1 = 𝑎𝑥𝑡 + 1 − 𝑎 𝑏 − 𝜂𝑅𝑃𝑢𝑡 + 𝑤𝑡,

• 𝑐(𝑥𝑡) represents the “distance” between a 

state 𝑥𝑡 and a desired range [20, 21] °C. 

The assumed disturbance distribution is 

discrete and does not depend on (𝑥𝑡, 𝑢𝑡). 
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The empirical mean and variance may increase, as 

𝜃 becomes more “risk-averse.” 

c 𝑥𝑡 = max{𝑥𝑡 − 21,20 − 𝑥𝑡}

10 million samples of 𝑍
per point

A realization of 𝑍 takes the 

form σ𝑡=0
𝑁 𝑐(𝑥𝑡).

Nearly risk-neutral

𝜃 = −5 ⋅ 10−5

Smith & Chapman, under review

Kevin Smith



26

c 𝑥𝑡 = max{𝑥𝑡 − 21,20 − 𝑥𝑡 , 0}

Non-negative

Nearly risk-neutral

𝜃 = −5 ⋅ 10−5

Smith & Chapman, under review

10 million samples of 𝑍
per point

The empirical mean and variance may increase, as 

𝜃 becomes more “risk-averse.” 

A realization of 𝑍 takes the 

form σ𝑡=0
𝑁 𝑐(𝑥𝑡).

Kevin Smith
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Recall that there are different types of risk functionals, e.g.,

Quantile-based: VaRα(Z), CVaRα(Z).

Mean-dispersion: E(Z) + λη(Z), where λ > 0;

Expected Utility: h-1(E(h(Z))), where h is a sufficiently regular utility function; 

Compositional: ρ1(Z1 + ρ2(Z2 + ρ3(Z3 + ρ4(Z4))));

We will present related 

literature next.
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• Ruszczyński 2010; Ruszczyński 2014; Asienkiewicz & Jáskiewicz 2017; Singh+ 2018; Bäuerle & Glauner

2021 (Eur. J. Oper. Res.); Köse & Ruszczyński 2021, Ahmadi+ 2021,… 

Compositional:

*Considers additional risk functionals.

𝜌 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4 ≔ 𝜌1 𝑍1 + 𝜌2 𝑍2 + 𝜌3 𝑍3 + 𝜌4 𝑍4

• Bäuerle & Ott 2011: CVaR, cumulative cost, Borel spaces, DP

• Borkar & Jain 2014: CVaR constraint on a cumulative cost

• Haskell & Jain 2015: CVaR, cumulative cost, infinite time, infinite-dimensional LP*

• Miller & Yang 2018: CVaR, terminal cost, continuous time* 

• Chapman, Lacotte+ 2019, Chapman, Bonalli+ 2022: CVaR, maximum cost, safety analysis, DP

• Bäuerle & Glauner 2021 (Math. Method. Oper. Res.): spectral risk functionals, Borel spaces, DP

• Lindemann+ 2021: CVaR, VaR, signal temporal logic*

• Barbosa+ 2021: CVaR applied to robot motion planning

Quantile-based (e.g., CVaR, VaR, Spectral):

LP: linear programming, DP: dynamic programming.

Risk Functionals & Systems (not exhaustive)
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Talk Outline

1. Present the two mainstream paradigms for managing systems under uncertainty

2. Motivate the risk-averse paradigm

3. Present three concepts that are helpful for quantifying risk

4. Present risk functionals & optimal control problems:

a. Examples of risk functionals & standard form of a risk-averse optimal control problem

b. Pros/cons of exponential utility optimal control

c. Two additional methods:

i. Reduction to a family of nonstandard risk-neutral problems

ii. Dynamic programming for compositional risk functionals

5. Discuss adaptability and scalability challenges

6. Propose future directions
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High-level description of Chapman, Fauss, Smith, conditionally accepted by IEEE Trans. Autom. Control, May 2022. 

More conditions (not stated on this slide) are required to ensure that quantities are well-defined.

• We aim to minimize the CVaR of a maximum random variable 𝑍 ∶ Ω → ℝ

𝑉𝛼
∗ 𝑥 ≔ inf

𝜋∈Π
CVaR𝛼,𝑥

𝜋 (𝑍), 𝛼 ∈ (0,1], 𝑥 ∈ 𝑆,

𝑍 ≔ max{𝑐𝑁 𝑋𝑁 , 𝑐𝑡 𝑋𝑡, 𝑈𝑡 : 𝑡 ∈ {0,1, … , 𝑁 − 1}},          𝑐𝑡 ∈ 𝑎, 𝑏 ⊂ ℝ for every 𝑡.

• This problem provides a safety criterion for a stochastic system that is informed by both the probability and 

severity of the potential consequences of the system’s behaviour.

• CVaR𝛼,𝑥
𝜋 (𝑍) may be interpreted as the average value of 𝑍 in the 𝛼 ⋅ 100% worst cases when the initial state is 𝑥

and the system uses the policy 𝜋.

• Π is a particular class of history-dependent policies; 𝜋𝑡 in 𝜋 = (𝜋0, 𝜋1, … , 𝜋𝑁−1) ∈ Π depends on the state at 

time 𝑡 and the running maximum cost up to time 𝑡.

State space

Cost function

Trajectory 

space

Random max. distance between the system’s 

trajectory and a desired operating region

Example Method: Reduction to risk-neutral problems (with state-space augmentation)
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• A key idea: Identify a family of risk-neutral problems within a risk-averse problem.1

• CVaR𝛼,𝑥
𝜋 (𝑍) is defined by

𝑉𝛼
∗ 𝑥 ≔ inf

𝜋∈Π
CVaR𝛼,𝑥

𝜋 (𝑍), 

CVaR𝛼,𝑥
𝜋 𝑍 ≔ inf

𝑠∈ℝ
𝑠 + 1

𝛼
𝐸𝑥
𝜋 max 𝑍 − 𝑠, 0 ,

= inf
𝜋∈Π

inf
𝑠∈ℝ

𝑠 + 1

𝛼
𝐸𝑥
𝜋 max 𝑍 − 𝑠, 0 ,

= inf
𝑠∈ℝ

𝑠 + 1

𝛼
inf
𝜋∈Π

𝐸𝑥
𝜋 max 𝑍 − 𝑠, 0 .

𝑉𝑠 𝑥

• Now, the task is to solve for {𝑉𝑠 𝑥 ∶ 𝑠 ∈ ℝ, 𝑥 ∈ 𝑆}.

𝛼 ∈ (0,1],      𝑥 ∈ 𝑆,      𝜋 ∈ Π.   

1Additional papers use similar reduction techniques (slide 28).

Risk-aversion

level

High-level description of Chapman, Fauss, Smith, conditionally accepted by IEEE Trans. Autom. Control, May 2022. 

More conditions (not stated on this slide) are required to ensure that quantities are well-defined.

Example Method: Reduction to risk-neutral problems (with state-space augmentation)
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𝑉𝛼
∗ 𝑥 ≔ inf

𝜋∈Π
CVaR𝛼,𝑥

𝜋 𝑍 = inf
𝑠∈ℝ

𝑠 + 1

𝛼
𝑉𝑠 𝑥 .• Recall:

• To solve for 𝑉𝑠 𝑥 ≔ inf
𝜋∈Π

𝐸𝑥
𝜋 max 𝑍 − 𝑠, 0 , we define an extra random state 𝑌𝑡+1 ≔ max{𝑐𝑡 𝑋𝑡, 𝑈𝑡 , 𝑌𝑡}, initialized 

at a lower bound 𝑎 for 𝑐𝑡. 

• Under appropriate conditions, we show that 𝑉𝑠 𝑥 = 𝐽0
𝑠(𝑥, 𝑎), where 𝐽0

𝑠 is defined recursively by

𝐽𝑁
𝑠 𝑥, 𝑦 ≔ max{max 𝑐𝑁 𝑥 , 𝑦 − 𝑠, 0}, 𝑥, 𝑦 ∈ 𝑆 × [𝑎, 𝑏],

𝐽𝑡
𝑠 𝑥, 𝑦 ≔ inf

𝑢∈𝐶
𝐷׬ 𝐽𝑡+1

𝑠 𝑓𝑡 𝑥, 𝑢, 𝑤 ,max 𝑐𝑡 𝑥, 𝑢 , 𝑦 𝑝𝑡(d𝑤|𝑥, 𝑢), 𝑡 = 𝑁 − 1,… , 1, 0, 𝑥, 𝑦 ∈ 𝑆 × 𝑎, 𝑏 ,

and there is a deterministic policy 𝜋𝑠 that is optimal for 𝑉𝑠.

Terminal cost function

Dynamics 

function
Action

space

Disturbance 

distribution

Augmented 

state space

Maximum random variable Stage cost function

High-level description of Chapman, Fauss, Smith, conditionally accepted by IEEE Trans. Autom. Control, May 2022. 

More conditions (not stated on this slide) are required to ensure that quantities are well-defined.

Example Method: Reduction to risk-neutral problems (with state-space augmentation)
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Talk Outline

1. Present two mainstream paradigms for managing systems under uncertainty

2. Motivate the risk-averse paradigm & define risk-related terms for systems

3. Present three concepts that are helpful for quantifying risk with examples

4. Discuss risk functionals & optimal control problems:

a. Examples of risk functionals & standard form of a risk-averse optimal control problem

b. Pros/cons of exponential utility optimal control

c. Two additional methods: 

i. Reduction to a family of nonstandard risk-neutral problems

ii. Dynamic programming for compositional risk functionals

5. Adaptability and scalability challenges

6. Proposed future directions
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Example Method: Dynamic Programming for Compositional Risk Functionals 

• High-level idea: Replace a conditional expectation with a risk-averse analog.

• For 𝜋 ∈ Π, define 𝐽𝑁
𝜋 ≔ 𝑐𝑁, and for 𝑡 = 𝑁 − 1,… , 1, 0, define 

High-level description of a piece of Bäuerle & Glauner 2021 (Eur. J. Oper. Res.). Additional papers about 

compositional risk functionals use related techniques (slide 28). More conditions (not stated on this slide) are 

required to ensure that quantities are well-defined. 

𝐽𝑡
𝜋 𝑥 ≔ 𝑐𝑡 𝑥, 𝜋𝑡 𝑥 + 𝜈𝑡 𝐽𝑡+1

𝜋 𝑓𝑡 𝑥, 𝜋𝑡 𝑥 ,𝑊𝑡 , 𝑥 ∈ 𝑆,

𝐽𝑡
∗ 𝑥 ≔ inf

𝜋∈Π
𝐽𝑡
𝜋(𝑥), 𝑥 ∈ 𝑆. 

• Under appropriate conditions, 𝐽𝑡
∗ satisfies

𝐽𝑡
∗ 𝑥 = inf

𝑢∈𝐶
𝑐𝑡 𝑥, 𝑢 + 𝜈𝑡 𝐽𝑡+1

∗ 𝑓𝑡 𝑥, 𝑢,𝑊𝑡 , 𝑥 ∈ 𝑆.

a risk functional

• A special case is

Class of deterministic 

Markov policies

𝜈𝑡 𝐽𝑡+1
𝜋 𝑓𝑡 𝑥, 𝑢,𝑊𝑡 = 𝐷׬ 𝐽𝑡+1

𝜋 𝑓𝑡 𝑥, 𝑢, 𝑤 𝑝𝑡 d𝑤 𝑥, 𝑢 , 𝑥, 𝑢 ∈ 𝑆 × 𝐶.

Dynamics 

function

Random 

disturbance
State

space

Disturbance 

distribution

Terminal cost function

Space of 

disturbances

Action

space
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Many problem-solving methods are based on reformulating a risk-

neutral algorithm. We have seen two examples:

Such a method inherits adaptability and scalability issues of the original 

risk-neutral algorithm. 

A risk-neutral algorithm: An algorithm that aims to minimize an expected cumulative cost 

subject to a (partially observable) Markov decision process (e.g., dynamic programming, 

Q-learning, temporal difference learning).

1. Reduce a risk-averse problem to a family of nonstandard risk-neutral problems (e.g., when the 

objective is defined using CVaR, a spectral risk functional, or an extremal risk functional).

2. Replace a conditional expectation with a risk-averse analog (e.g., when the objective is defined 

using a compositional risk functional).
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Some Adaptability Issues & Related Questions

• A representative family of disturbance distributions or an ability to generate representative data 

samples (e.g., by simulating transitions) is required to “optimize” a system’s behaviour.

How can we design off-line or on-line experiments to...

…understand and model the sources of uncertainty and estimate their (potentially) 

…time-varying effects on the system without being overly conservative?

…generate samples with desired statistical properties at runtime?

…accomplish the above when sampling is expensive?
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• Typically, dynamic programming, Q-learning, and temporal difference learning cannot scale to 

high-dimensional state spaces without value function or policy approximations.

• Training value function or policy approximations (e.g., using polynomial basis functions, neural 

networks, etc.) may require large data sets. 

For a risk-averse optimal control problem of interest, what theoretical conditions justify 

the use of such approximations?

How can existing statistical methods (e.g., importance sampling, extreme value theory) 

be applied to model rare high-consequence events in data-sparse applications?

Some Scalability Issues & Related Questions
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Extreme Value Theory (EVT) may be useful for risk estimation in           

data-sparse applications.

Arsenault, Wang, Chapman, IEEE Control Systems Letters, 2022 (in press)

• EVT is the study of the long-term behaviour of normalized maxima of random variables (de Haan & Ferreira 2006).

• Recently, we proposed an EVT-based estimator for the upper semi-deviation 𝐸(max{𝑍 − 𝐸 𝑍 , 0}) in a fraction 

𝛼 of the largest realizations of 𝑍.

• We showed that the estimator enjoys a closed-form representation in terms of CVaR.

• In experiments, we illustrated the extrapolation power of the estimator using a small number of i.i.d. samples.

Evan ArsenaultYuheng Wang
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Orange: EVT-based estimator – 𝜌0.01

Blue: Typical estimator – 𝜌0.01

𝜌0.01: Monte Carlo estimate with ≥4 

million samples

Typical estimator: based on a sample 

average

Arsenault, Wang, Chapman, IEEE Control Systems Letters, 2022 (in press)

The EVT-based estimator outperforms the typical estimator for smaller 

numbers of samples.

Average error 

(10,000 trials)

50% 

confidence 

interval

Evan ArsenaultYuheng Wang
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Proposed Future Directions

• Use of risk functionals and data samples to adapt estimates of system models or “safe” regions

• Köse and Ruszczyński 2021 provides empirical evidence that risk functionals can protect 

against modelling (specifically, value function approximation) errors.

• Further studies about risk-averse model-free methods from a nonasymptotic viewpoint

• Finite-time horizons and finitely many samples are used in practice.

• Huang & Haskell 2021 offers a nonasymptotic analysis of a risk-averse Q-learning algorithm.

• Additional investigations about which risk functional(s) may be more appropriate for a particular 

application



42

Proposed Future Directions

• Studies that develop theoretical risk-averse optimal control methods with both model-free and 

model-based aspects

• Different variations of such methods are needed to accommodate diverse applications. E.g.,

• To improve a cancer patient’s outcomes, consider a blend of the oncologist’s expertise, the 

patient’s recent and historical data, and biological and chemical models. 

• To support environmental health (e.g., related to hydroelectricity), combine advice from water & 

energy experts, precipitation data, weather forecasts, and models for the flow and quality of 

water.

Figure credit: Wang & Chapman 2022
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