

From Linear Systems to

Discrete-Event Systems

W.M. Wonham

Systems Control Group

ECE Department

University of Toronto

2012.03.22

This talk is about

 CYBERNETICS

whatever that is …

“KYBERNETES” =

“STEERSMAN” (= “GOVERNOR”)

Homer’s Iliad and Odyssey (BCE 750)

“CYBERNETICS” ENTERS

MATHEMATICAL SCIENCE

Norbert Wiener (1894-1964)

 1948

Cybernetics: Control and

Communication in the Animal and the

Machine.

Theme: The universality of feedback

in technology, physiology, psychology,

sociology, economics …; together with

the concomitant problems of stability,

noise filtering, and prediction.

“CYBERNETICS” ENTERS

ENGINEERING SCIENCE

H.S. Tsien (Qian Xuesen, 1911-2009)

 1954

“[E]ngineering cybernetics is an

engineering science [which] aims to

organize the design principles used in

engineering practice into a discipline

and thus … to emphasize the power

of fundamental concepts.”

What is a Discrete-Event

System?

• Structure with ‘states’ having duration in time,
‘events’ happening instantaneously

 and asynchronously.

• States: machine is idle, is operating,

 is broken down, is under repair.

• Events: machine starts work, completes work,
breaks down, or completes repair.

• State space discrete and usually finite.

• State transitions ‘identified’ with events.

Summary

• Some history

• Supervisory Control Theory (SCT)

• Large systems (using IDDs)

• Hierarchy

• Extensions and Applications

• Conclusions

Discrete-Event Systems

(c. 1980)

• Practical problems –

 inventory, traffic, logistics …

• Programming languages

 for modeling & simulation

• Queues, Markov chains, Petri nets

• Synchronization (semaphores, path

 expressions …)

• Process algebras (CSP, CCS)

Discrete-Event

Systems Control ? (c.1980)

• Control problems implicit in the literature

 (enforcement of resource constraints,

 synchronization, ...)

But

• Emphasis on modeling, simulation,

 performance measurement, verification

• Little formalization of control synthesis

• Absence of control-theoretic ideas

• No standard model or approach to control

Systems Control Concepts

(c. 1980)
• State space framework well-established:

 Stability

 Controllability

 Observability

 Optimality (Quadratic, Lvarious, H)

• Qualitative synthesis via

 controlled dynamic invariants

• Use of geometric constructs and

 partial order:

 Controllability subspaces (c.s.)

 - supremal subspaces!

Needed (1980):

 DES Control Theory

• System model

 Discrete in time and (usually) space

 Asynchronous (event-driven)

 Nondeterministic

 - support transitional choices

• Amenable to formal control synthesis

 - exploit control concepts

• Applicable: manufacturing, traffic, logistic,...

Proposed (1982):

Supervisory Control Theory
(Peter Ramadge & WMW)

• Automaton representation

 - internal state descriptions for

 concrete modeling and computation

• Language representation

 - external i/o descriptions for

 implementation-independent

 concept formulation

• Simple control ‘technology’

Community Response

• [Leading control journal]

 “Automata have no place in

 control engineering.”

• [Leading computer journal]

 “Finite automata and regular languages are

 nothing new at best and trivial at worst.”

 • SIAM J. Control & Optimization

 “So this is optimal control? Well...”

Anonymous Referees (1983-87)

Reject!

Reject!

Accept

Summary

• Some history

• Supervisory Control Theory (SCT)

• Large systems (using IDDs)

• Hierarchy

• Extensions and Applications

• Conclusions

FROM ‘STANDARD’ CONTROL

TO SUPERVISORY CONTROL
• Standard dynamics: dx/dt = f(t,x,u)

 Supervisory control dynamics: automaton
with labeled transitions (events), some of
which are controllable

• Standard output: y(t) = G[x(s),u(s)|s ≤ t]

 Supervisory control output: sequence of
transition labels = string in a language

“AUTOMATON” = “SELF-MOVER”

Homer’s Iliad - 18, lines 373-377

Twenty tripods [Hephaistos] crafted, to

stand around … his house. At the base

of each he placed golden wheels, so

these self-movers [hoi automatoi] might

enter the divine assembly, and return

back to the house, a wonder to behold!

SCT Base Model

• Automaton

 MACH

Idle

Down

• Control Technology

 = {, } {, }

 = con uncon

uncontrollable

controllable

Work

SCT Languages
• Closed and Marked Behaviors

 L(MACH) = all strings generable from initial state I

 = {, , , , , , …}

 = closed behavior of MACH

 Lm(MACH) = all generable strings hitting some marker

 state

 = {, , , …}

 = marked behavior of MACH

• Liveness (Nonblocking): L(MACH) = Lm (MACH)

prefix

closure

 I

W D

Synchronous Product

• Builds a more complex automaton

 with more complex language

 L(A1 A2) = P1
-1

 L(A1) P2
-1 L(A2)

 expressed by natural projections

 Pi: (1

 2)
* i

* (i = 1,2)

shared

SCT Complex Plant

• Complex plant

 = sync product of simple subplants

TL = M1 || M2 || TU

Transfer Line TL (Al-Jaar & Desrochers)

M1 B1 M2 B2 TU
1 2 3 4 5 6

8

SCT Complex (Safety) Specification

• Complex specification

 = sync product of partial specifications

 BUFFSPEC = B1 || B2

B2

4

5

B1

 2, 8 2,8

 3 3 3

2, 8

General Control Issues

• Is there a control that enforces both

safety, and liveness (nonblocking),

and which is maximally permissive ?

• If so, can its design be automated ?

• If so, with acceptable computing

effort ?

SCT Synthesis - Problem

1. Safety:

 Lm(ConTL) Lm(BUFFSPEC)

2. Liveness (nonblocking):

 Lm(ConTL) = L(ConTL)

3. Maximal permissiveness:

 Lm(ConTL) = maximum

 subject to safety and liveness

E.g. for TL, let ConTL = ‘TL under control’

Must guarantee

SCT Synthesis - Solution

E.g. for TL:

2. Fundamental result

 There exists a (unique) supremal controllable
 sublanguage

 Ksup Lm(TL) Lm(BUFFSPEC)

 Furthermore Ksup can be effectively computed.

1. Fundamental definition

 A sublanguage K Lm(TL) is controllable if
 _ _
 K uncon L(TL) K

 “Once in K, you can’t skid out on an uncontrollable event.”

SCT Synthesis Lattice

Lm(TL) Lm(BUFFSPEC)

* (all strings)

Lm(BUFFSPEC) Lm(TL)

optimization

Ksup (optimal)

K" (suboptimal) K'

 (no strings)

 ‘Monolithic’ SCT Implementation

• Given TL and BUFFSPEC, compute Ksup

 Ksup = Lm(SUPER)

 SUPER = supcon (TL, BUFFSPEC)

 • Given SUPER, implement Ksup

TL

SUPER

Ksup
enable/disable

events in con

Summary

• Some history

• Supervisory Control Theory (SCT)

• Large systems (using IDDs)

• Hierarchy

• Extensions and Applications

• Conclusions

Large DES

PLANT = sync (PLANT.1, … , PLANT.m)

SPEC = sync (SPEC.1, … , SPEC.n)

SUPER = supcon (PLANT, SPEC)

State size of SUPER ~ (Constant) m+n

Exponential state space explosion !

‘Extensional’ listing of ‘flat’ transition structures is

impossible !

What To Do ?

• In state representations,

 retain product structure

 PLANT state vector x = [x1, ... , xm]

 SPEC state vector y = [y1, … , yn]

• Express SUPER as a predicate

 Predsup (x, y, , x, y) = 0 or 1

• Algorithmize representation of Predsup

 using Integer Decision Diagrams (IDDs)

Integer Decision Diagrams

(IDDs)

• IDDs represent functions on finite sets

 x1 x2 f

 0 0 1

 0 1 0

 1 0 1

 1 1 0

 2 0 0

 2 1 0

Root

1 0 1 0 0 0

0

0 0 0

2 1

1 1 1

x1

x2

f

Order!

Reduce!

1 0

0

0 1

0

2

1

Root

f

x2

x1

IDD

 Manufacturing Workcell
 (Barkaoui & Ben Abdallah 1995, Seidl 2000)

Machine 2

Machine 4

Robot 1

Machine 1

Machine 3

Output 1

Input 1 Output 2

 Robot 2 Input 2

31

Workcell Control Issues

Red Production Sequence (‘safety’ specification)

I2 M4 M2 O2
Robot 2 Robot 1 Robot 1

Green Production Sequence (‘safety’ specification)

I1
M1

M2

M3 O1
Robot 2

Robot 1 Robot 1

 Blocking! (prohibit by nonblocking ‘liveness’ spec’n)

M4 M2 M3
Robot 1 ?! Robot 1

IDD Results: Workcell

 K

 State

 size

 Node

 count

 Time

 (sec)

 Mem

 (MB)

Condat

 (KB)

 1 205 77 1 1.0 1

 4 1.9106 194 2 1.6 3

 10 5.8109 620 10 2.9 19

 30 3.41014 3,600 201 11. 281

 50 7.41016 8,980 1,382 30. 1,123

Supervisor Implementation

new enabled

 event set

Control IDDs SUPER

PLANT

new event

{0,1}n
 state

vector

Summary

• Some history

• Supervisory Control Theory (SCT)

• Large systems (using IDDs)

• Hierarchy

• Extensions and Applications

• Conclusions

Architecture:

Hierarchical Layering

• Scope # subordinates

 time horizon

 bandwidth –1

 frequency –1 of significant events

• Scope ratio (adjacent levels) 5:1

 e.g. 20,000 employees 7 levels

Manager (slow)

Operator (fast)

scope

Hierarchical Consistency

HI MANAGER

LO OPERATOR

HI WORLD

LO WORLD

plan

control

report

advise

command

plan = report (control command)
?

fb

Report and Command

 -1

 (M)

 (L)

command

 command is modeled by -1 : (M) (L)

PLANThi

PLANTlo

report

T

 T*

 * L

 M

 report is modeled by : L T *, (L) =: M

Hierarchical Transfer Line

M1 B1 M2 B2 TU

Event = ‘TU returns faulty workpiece for reworking’

For hierarchical control, bring in

 manager’s hi-level alphabet T with events , ', ...

Hierarchical Transfer Line –

 LO to HI

Hierarchical Transfer Line -

HI-Level Synthesis

SPEC - HI

fail

pass

fail pass

SUPER - HI
pass

pass

fail fail

Summary

• Some history

• Supervisory Control Theory (SCT)

• Large systems (using IDDs)

• Hierarchy

• Extensions and Applications

• Conclusions

Extensions
• General architectures: Heterarchical control,

 combining hierarchical, decentralized, and distributed control,

 with supervisor localization to create ‘smart’ agents

• Forced (preemptive) events

• Timed events (delays, deadlines, forcing)

• Liveness (= eventuality), temporal logic –

 infinite-string (- languages)

• Liveness (fairness, -calculus)

• Algebraically hybrid (?) –

 X = Q1 ... Qk n m

• Smart computation: (Timed) State Tree Structures with BDDs

Applications

• Communication protocol specification (Rudie 1990)

• Rapid thermal multiprocessor (Hoffmann 1991)

• Robotic agents (Kosecka 1994)

• AIP automated manufacturing system

 (Brandin 1994, Leduc 2001, Ma 2003)

• Telephone feature interaction (Thistle 1995)

• Chemical process control (Sanchez 1996, Alsop 1996)

• Truck dispatching (Blouin 2001)

• Telephone directory assistance call center (Seidl 2004)

• Electrical power flow control (Afzalian 2009)

• MRI scanner patient support system (Theunissen 2010)

Conclusions

• Achievements of SCT:

 * Synthetic and general

 * Results correct by construction

 and computable for large systems

 * Modular architecture, and smart computation

 for management of complexity

 * Easy to teach and use (e.g. materials on Internet)

• Challenges for SCT:

 * How to interpret and modify controller

 structure (e.g. IDDs linear inequalities) ?

 * How to find general laws of architecture ?

APPENDIX

 ADDITIONAL

 TECHNICAL DETAILS

‘ROMANTIC’ VIEW – CE 1891

TCT MACH

MACH = Create (MACH)

MACH := (Q, , , q0, Qm)

> name: MACH

> # states: 3 {TCT Q := {0,1,2}, q0 := 0}

> marker state(s): 0 {TCT Qm := {0}}

> transitions: [0,11,1], [1,10,0], [1,12,2], [2,13,0]

 {TCT := {10, 11, 12, 13}, : Q Q transitions}

> quit <Ret> {TCT files MACH.DES}

 0

 1 2

 11

12

13 10

Supervisor Reduction
• Monolithic supervisor SUPER is automaton

 representation of controlled behavior

• Controlled behavior has state size

 ||Lm(SUPER)|| = ||SupC(Lm(PLANT)Lm(SPEC))||

 ||Lm(PLANT)|| ||Lm(SPEC)||

• Heuristically, compute reduced, control-
equivalent supervisor SIMSUP, often with

 ||Lm(SIMSUP)|| << ||Lm(SUPER)||

• E.g. for TL (below), 12 16 4, 3 << 12

TCT TRANSFER LINE (TL)

M1 = Create (M1), M2 = Create (M2), TU = Create (TU)

TL = Sync (M1, M2, TU) {synchronous product}

B1 = Create (B1), B2 = Create (B2)

BUFFSPEC = Sync (B1, B2) {synchronous product}

SUPER (.DES) = SupCon (TL, BUFFSPEC) {optimization}

SUPER (.DAT) = ConDat (TL, SUPER(.DES)) {control data}

SIMSUP = SupReduce (TL, SUPER(.DES), SUPER(.DAT))

 {supervisor reduction}

SIMSUP (.DAT) = ConDat (TL, SIMSUP) {control data}

Computing Effort vs. |Nodes|

• Computing time ~ |Nodes|1.5 << |States|

• Memory usage ~ |Nodes| K

• For ‘loosely coupled’ practical systems

 |Nodes| ~ N K C

where N = number of system components (m+n)

 K state size of individual automata

 C = coupling coefficient 2

• |Nodes| linear (not exponential!) in N

Achieving Hierarchical Consistency

M (M) (M)

L (L) (L)

 -1
 sup L()

 sup M ()

By design of T, arrange

“ is an observer

 and preserves controllability”

Then diagram commutes, giving

 hierarchical consistency

