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This talk is about 

  

       CYBERNETICS 

 
 

whatever that is … 
 



“KYBERNETES” =  

“STEERSMAN” (= “GOVERNOR”) 

Homer’s Iliad and Odyssey (BCE 750) 



“CYBERNETICS” ENTERS 

MATHEMATICAL SCIENCE 

Norbert  Wiener (1894-1964) 

                            1948 
 
Cybernetics: Control and 

Communication in the Animal and the 

Machine. 
 

Theme: The universality of feedback 

in technology, physiology, psychology, 

sociology, economics …; together with 

the concomitant problems of stability, 

noise filtering, and prediction.  



“CYBERNETICS” ENTERS 

ENGINEERING SCIENCE 

H.S. Tsien (Qian Xuesen, 1911-2009) 

                          1954 

 

“[E]ngineering cybernetics is an 

engineering science [which] aims to 

organize the design principles used in 

engineering practice into a discipline 

and thus … to emphasize the power 

of fundamental concepts.” 

 



What is a Discrete-Event 

System? 

• Structure with ‘states’ having duration in time, 
‘events’ happening instantaneously  

    and asynchronously. 

• States: machine is idle, is operating,  

    is broken down, is under repair. 

• Events: machine starts work, completes work, 
breaks down, or completes repair. 

• State space discrete and usually finite. 

• State transitions ‘identified’ with events. 



Summary 

•  Some history 

•  Supervisory Control Theory (SCT) 

•  Large systems (using IDDs) 

•  Hierarchy  

•  Extensions and Applications 

•  Conclusions 



Discrete-Event Systems  

(c. 1980)  

• Practical problems –  

       inventory, traffic, logistics … 

• Programming languages  

       for modeling & simulation 

• Queues, Markov chains, Petri nets 

• Synchronization (semaphores, path 

       expressions …) 

• Process algebras (CSP, CCS) 



Discrete-Event  

Systems Control ? (c.1980)  

• Control problems implicit in the literature 

    (enforcement of resource constraints, 

      synchronization, ...) 

 

But 

•  Emphasis on modeling, simulation,  

     performance measurement, verification    

•  Little formalization of control synthesis 

•  Absence of control-theoretic ideas 

•  No standard model or approach to control 

     



Systems Control Concepts  

(c. 1980) 
• State space framework well-established: 

        Stability 

        Controllability  

        Observability  

        Optimality (Quadratic, Lvarious, H) 

• Qualitative synthesis via  

        controlled dynamic invariants 

• Use of geometric constructs and  

    partial order: 

        Controllability subspaces (c.s.)  

           - supremal subspaces! 

          



Needed (1980):  

 DES Control Theory 

• System model  

        Discrete in time and (usually) space 

        Asynchronous (event-driven) 

        Nondeterministic  

           -  support transitional choices 

•  Amenable to formal control synthesis  

           -  exploit control concepts 

•  Applicable: manufacturing, traffic, logistic,... 



Proposed (1982): 

Supervisory Control Theory 
(Peter Ramadge & WMW) 

• Automaton representation 

        - internal state descriptions for  

           concrete modeling and computation 

•  Language representation 

        - external i/o descriptions for  

           implementation-independent 

           concept formulation 

•   Simple control ‘technology’ 

  



Community Response 

• [Leading control journal]  

     “Automata have no place in  

      control engineering.”                                             

                                                                      
• [Leading computer journal]  

     “Finite automata and regular languages are 

       nothing new at best and trivial at worst.”             

                                                                        

                                                      • SIAM J. Control & Optimization 

      “So this is optimal control?  Well...”                    

                                                                                                                                                       

Anonymous Referees (1983-87) 

Reject! 

Reject! 

Accept 
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•  Supervisory Control Theory (SCT) 
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FROM ‘STANDARD’ CONTROL  

TO SUPERVISORY CONTROL 
• Standard dynamics:  dx/dt = f(t,x,u)   

 

   Supervisory control dynamics:  automaton 
with labeled transitions (events), some of 
which are controllable 

 

• Standard output:  y(t) = G[x(s),u(s)|s ≤ t] 

   

   Supervisory control output: sequence of      
transition labels =   string in a language 

 



“AUTOMATON” = “SELF-MOVER” 

Homer’s Iliad - 18, lines 373-377 

Twenty tripods [Hephaistos] crafted, to 

stand around … his house.  At the base 

of each he placed golden wheels, so 

these self-movers [hoi automatoi] might 

enter the divine assembly, and return 

back to the house, a wonder to behold! 



SCT  Base  Model 

•  Automaton 

 MACH 

Idle 

Down 

  
 

 

•  Control Technology 

  =   {, }  {, } 

 

     =    con         uncon 

uncontrollable 

controllable 

Work 



SCT  Languages 
•  Closed and Marked Behaviors 

 L(MACH)    =  all strings generable from initial state I 

 

                    =  {, , , , , , …} 

 

                    =   closed behavior of MACH 

 

           Lm(MACH)  =   all generable strings hitting some  marker 

                            state    

                       

                     =   {, , , …} 

 

                     =   marked behavior of MACH                       

                                                                           _________ 

•  Liveness (Nonblocking):       L(MACH)  =  Lm (MACH)     

 

prefix 

closure 

  I 

W      D 

 

 

  



Synchronous Product 

• Builds a more complex automaton 

 

 

 

 

   with more complex language 

 

 

 

 

  

 

 

            L(A1  A2)  =  P1
-1

 L(A1)    P2
-1 L(A2) 

 
     expressed by natural projections 
 
                 Pi: ( 1

  2) 
*    i

*     (i = 1,2)      
 

shared 

 

  



SCT  Complex Plant 

• Complex plant 

       =  sync product of simple subplants 

 

 

 

 

TL  =  M1  ||  M2  ||  TU 

Transfer Line  TL  (Al-Jaar & Desrochers) 

M1 B1 M2 B2 TU 
1 2 3 4 5 6 

8 



SCT Complex (Safety) Specification 

• Complex specification   

            =  sync product of partial specifications 

 BUFFSPEC  =  B1 ||  B2  

B2 

4 

5 

B1 

 2, 8 2,8 

 3 3 3 

2, 8 



General Control Issues 

• Is there a control  that enforces both 

safety, and  liveness (nonblocking), 

and which is maximally permissive ? 

 

• If so, can its design be automated ? 

 

• If so, with acceptable computing 

effort ? 

 



SCT  Synthesis  -  Problem 

1.   Safety: 
 
         Lm(ConTL)          Lm(BUFFSPEC)                                          

2.   Liveness  (nonblocking): 

                                                 
         Lm(ConTL)     =    L(ConTL)       

3.   Maximal  permissiveness: 
 
         Lm(ConTL)     =     maximum 
 
      subject to safety and liveness 

E.g. for TL, let ConTL  =  ‘TL under control’ 

Must guarantee 



SCT  Synthesis  -  Solution 

E.g. for TL: 

2.   Fundamental result 
 
       There exists a (unique) supremal controllable 
       sublanguage 
 
               Ksup    Lm(TL)    Lm(BUFFSPEC) 
 
       Furthermore  Ksup  can be effectively computed. 

1.   Fundamental definition 
 
        A  sublanguage  K    Lm(TL)  is  controllable  if 
               _                                _     
               K uncon    L(TL)    K               
                        
        “Once in K,  you can’t skid out on an uncontrollable event.”  



SCT  Synthesis  Lattice 

Lm(TL)    Lm(BUFFSPEC) 

*  (all strings) 

Lm(BUFFSPEC) Lm(TL) 

optimization 

Ksup (optimal) 

K"  (suboptimal) K' 

  (no strings) 



 ‘Monolithic’  SCT  Implementation 

• Given TL and BUFFSPEC, compute Ksup 

                  Ksup  =  Lm(SUPER) 
 
              SUPER  =  supcon (TL, BUFFSPEC) 

 

     •   Given SUPER, implement  Ksup 

TL 

SUPER 

Ksup 
enable/disable 

events in  con 



Summary 

  

• Some history 

•  Supervisory Control Theory (SCT) 
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Large  DES 

PLANT   =  sync (PLANT.1, … , PLANT.m) 

 

SPEC     =  sync (SPEC.1, … , SPEC.n) 

 

SUPER   =  supcon (PLANT, SPEC) 

 

State size of SUPER  ~  (Constant) m+n 

Exponential state space explosion !  

‘Extensional’ listing of ‘flat’ transition structures is 

impossible !  



What To Do ? 

• In state representations,  

    retain product structure 

    PLANT  state  vector  x  =  [x1, ... , xm] 

          SPEC  state vector  y  =  [y1, … , yn] 
 
 

• Express  SUPER as a predicate 

       Predsup (x, y, , x, y)   =  0  or  1 

 

• Algorithmize  representation  of  Predsup 

    using  Integer Decision Diagrams (IDDs) 

 

 

 
  

 



Integer  Decision  Diagrams  

(IDDs) 

• IDDs  represent  functions  on  finite  sets 

  x1                  x2   f 

  0   0   1 

  0   1   0 

  1   0   1 

  1   1   0 

  2   0   0 

  2   1   0 

Root 

1 0 1 0 0 0 

0 

0 0 0 

2 1 

1 1 1 

x1 

x2 

f 

Order! 

Reduce! 

1 0 

0 

0 1 

0 

2 

1 

Root 

f 

x2 

x1 

IDD 



 Manufacturing Workcell 
 (Barkaoui & Ben Abdallah 1995, Seidl 2000) 

Machine 2 

Machine 4 

Robot 1 

   

Machine 1 

Machine 3 

Output 1 

Input 1 Output 2 

 Robot 2  Input 2 

31 



Workcell  Control  Issues 

Red Production Sequence (‘safety’ specification) 

I2 M4 M2 O2 
Robot 2   Robot 1 Robot 1 

Green Production  Sequence (‘safety’ specification) 

I1 
M1 

M2 

M3 O1 
Robot 2 

Robot 1        Robot 1 

 Blocking!  (prohibit by nonblocking  ‘liveness’   spec’n) 

M4 M2 M3 
Robot 1 ?! Robot 1 



IDD Results: Workcell 

 K 

 

   State 

    size 

 Node 

 count 

 Time 

 (sec) 

 Mem 

 (MB) 

Condat 

  (KB) 

   1         205        77         1      1.0         1  

   4  1.9106      194         2      1.6         3 

 10  5.8109      620       10      2.9       19 

 30 3.41014   3,600     201    11.     281 

 50 7.41016   8,980  1,382    30.  1,123 

   



Supervisor  Implementation 

new  enabled 

  event  set 

  

 

 
 

 

 
 

 

 
 

 

Control IDDs SUPER 

PLANT 

new event 

{0,1}n 
 state 

vector 
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Architecture: 

Hierarchical  Layering 

•   Scope    #  subordinates 

                     time horizon  

                     bandwidth –1 

                               frequency –1  of significant events 

 

•     Scope ratio (adjacent levels)    5:1 

     e.g.  20,000 employees    7 levels 
 

                        

Manager  (slow) 

Operator  (fast)  

scope 



Hierarchical  Consistency 

HI  MANAGER 

LO  OPERATOR 

HI  WORLD 

LO  WORLD 

plan 

control 

report 

advise 

command 

plan  =  report   (control    command) 
? 

fb 



Report  and  Command 

 -1   

   (M) 

   (L) 

command   

 command  is  modeled  by   -1 :  (M)   (L) 

 

PLANThi 

PLANTlo 

report 

T 

 

  T* 

  *    L  

    M 

 report  is modeled by   : L  T *,   (L)  =:  M    



Hierarchical  Transfer  Line 

M1 B1 M2 B2 TU 

 

Event   =  ‘TU returns faulty workpiece for reworking’ 

For hierarchical control, bring in 

    manager’s  hi-level alphabet  T with events , ', ... 



Hierarchical  Transfer  Line – 

 LO  to  HI  

   

  



Hierarchical  Transfer Line - 

HI-Level  Synthesis 

SPEC - HI 

fail 

pass 

fail pass 

SUPER - HI 
pass 

pass 

fail fail 
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Extensions  
• General architectures:  Heterarchical control,  

     combining hierarchical, decentralized, and distributed control, 

     with supervisor localization to create ‘smart’ agents 

 

• Forced (preemptive) events 

 

• Timed events (delays, deadlines, forcing) 

         

• Liveness (= eventuality), temporal logic –    

      infinite-string (  - languages) 

         

• Liveness (fairness, -calculus)  

         

• Algebraically hybrid (?) – 

         X =  Q1   ...  Qk  n  m 

 
 

• Smart computation: (Timed) State Tree Structures with BDDs  

 

         
 

 

 



Applications 

• Communication protocol specification  (Rudie 1990) 

•   Rapid thermal multiprocessor  (Hoffmann 1991)  

•   Robotic agents  (Kosecka 1994) 

•   AIP  automated manufacturing system   

       (Brandin 1994, Leduc 2001, Ma 2003)      

•   Telephone feature interaction  (Thistle 1995) 

•   Chemical process control  (Sanchez 1996,  Alsop 1996) 

•   Truck dispatching  (Blouin 2001) 

•   Telephone directory assistance call center (Seidl 2004) 

•   Electrical power flow control (Afzalian 2009)  

•   MRI scanner patient support system (Theunissen 2010) 





Conclusions 

• Achievements of SCT: 

       *   Synthetic and general 

       *   Results correct by construction 

                and computable for  large systems 

       *   Modular architecture, and smart computation          

                for management of complexity 

       *   Easy to teach and use  (e.g. materials on Internet)  

              
• Challenges for SCT: 

       *   How to interpret and modify controller 

            structure  (e.g. IDDs    linear inequalities) ? 

       *   How to find general  laws of architecture ? 





APPENDIX 

                       ADDITIONAL  

               TECHNICAL DETAILS 



‘ROMANTIC’ VIEW – CE 1891 



TCT  MACH 

MACH  =  Create (MACH) 

MACH  :=  (Q, , , q0, Qm) 

>  name:  MACH 

>  # states:  3                         {TCT  Q :=  {0,1,2},  q0 := 0} 

>  marker state(s):  0                               {TCT  Qm :=  {0}} 

>  transitions:  [0,11,1], [1,10,0], [1,12,2], [2,13,0] 

     {TCT   := {10, 11, 12, 13},   : Q    Q  transitions}  

>  quit   <Ret>                             {TCT  files  MACH.DES} 

  0 

   1   2 

 11 

12 

13 10 



Supervisor Reduction 
• Monolithic supervisor  SUPER is automaton 

    representation of  controlled behavior 
 

• Controlled behavior has state size 
 

     ||Lm(SUPER)|| = ||SupC(Lm(PLANT)Lm(SPEC))|| 

                              ||Lm(PLANT)||  ||Lm(SPEC)|| 
 

•  Heuristically, compute reduced, control- 
equivalent  supervisor SIMSUP, often with 

 

         ||Lm(SIMSUP)||  <<  ||Lm(SUPER)|| 
 

•  E.g. for TL (below), 12   16  4,  3 << 12 

     

     



TCT  TRANSFER LINE  (TL) 

M1  =  Create (M1),   M2  =  Create (M2),   TU = Create (TU) 

 

TL  =   Sync (M1, M2, TU)                         {synchronous product} 

 

B1  =  Create (B1),    B2  =  Create  (B2) 

 

BUFFSPEC  =  Sync (B1, B2)                  {synchronous product} 

SUPER (.DES)  =  SupCon (TL, BUFFSPEC)       {optimization} 

 

SUPER (.DAT)  =  ConDat (TL, SUPER(.DES))     {control data} 

 

SIMSUP  =  SupReduce (TL, SUPER(.DES), SUPER(.DAT)) 

                                                                    {supervisor reduction} 

SIMSUP (.DAT)  =  ConDat (TL, SIMSUP)             {control data} 



Computing Effort vs. |Nodes| 

• Computing time ~ |Nodes|1.5  <<  |States|  

• Memory usage  ~ |Nodes|  K 

• For ‘loosely coupled’ practical systems 

            |Nodes| ~ N  K C  

where  N  =  number of system components (m+n) 

            K   state size of individual automata 

            C  =  coupling coefficient   2 

•  |Nodes|   linear (not exponential!)  in  N 

                 

 

 

 

     



Achieving Hierarchical Consistency 

M                      (M)                             (M) 

L                       (L)                              (L) 

 -1  
 sup L( )           

   sup M ( ) 

By design of T,  arrange 
 
“  is an observer 

 and preserves controllability” 
     

Then diagram commutes, giving 
 
 hierarchical consistency 


